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Szemerédi`s Regularity lemma
A main ingredient in Szemerédis theorem about arithmetic progressions in sets of posi-
tive density is the Regularity lemma. Szemerédi used a weak form of this lemma, for 
bipartite graphs, to prove the theorem. Later he also proved a strong version, for more 
general graphs.
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  Szemerédi´s Regularity Lemma is a result in 
graph theory. The lemma states that for every large 
enough graph, the set of nodes can be dvided into 
subsets of about the same size so that the edges be-
tween different subsets behave almost randomly. 
In 1975, Szemerédi introduced a weak version of 
this lemma, restricted to socalled bipartite graphs, 
in order to prove his famous theorem about arith-
metic progressions. In 1978 he proved the full 
lemma. A graph consists of nodes and edges. The 
edges are connections between the nodes, and be-
tween two nodes there might or might not be an 
edge.  

A graph can be viewed as an abstract mathemati-
cal object, or as an illustration of some network. 
A road map is an example of a graph, where the 
crossings are the nodes and the roads in between 
are the edges. The friendship graph is another 

example, where the nodes can be thought of as a  
collection of people, and the edges as friendship 
relations. We usually draw a mathematical graph 
using dots for the nodes and straight lines for the 
edges. Graphs can have all kinds of complexity, 
the simplest one being graphs with only nodes and 
no edges. A graph with edges connecting any pair 
of nodes is called a complete graph. In general, a 
randomly chosen graph is something in between 
these two extremes. 
  Now, for any graph, consider two disjoint subsets 
of nodes, denoted by X and Y. If all the nodes in X 
are connected to all the nodes in Y, the number of 
edges between the two sets, e(X,Y) is the product 
of the number of nodes in the two sets. In general, 
the number of edges between the two sets will be 
less than this product. The fraction of the number 
of edges between nodes in X and Y, and the highest 
possible number of edges, given by the product of 
the cardinalities of the two sets, is called the den-
sity of the pair (X,Y), and is denoted d(X,Y). The 
density is 1 if all possible edges between the two 
sets are present in the graph, and 0 if there are no 
edges. You may think of the density as the average 
probability of the existence of an edge between 
two randomly picked nodes of  X and Y.
  Let (X,Y) be a pair of nodes of density d(X,Y). For 
different choices of subsets U and V of  X and Y, 
repectively, we can compute the density d(U,V) in 
the same way as above. The regularity of the the 
pair (X,Y) measures how the density varies when 
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set for a pair (X,Y) gives high regularity. The rea-
son is that for a randomlike edge set, the average 
probaility of finding an edge between two nodes 
in X and Y, is more or less independent of which 
subsets of  X and Y we consider. 

  For an arbitrary graph we normally know very 
little about the edge set. But Szemerédis Regu-
larity lemma makes us look at the edge set in a 
more manageable way. The strategy is to split 
the set of nodes of the graph into more or less 
equally sized subsets, and compute the regularity 
of each pair of subsets. If we can do this in such 
a way that each pair has a high degree of regular-
ity, we get a helpful tool to study the graph, even
if the edge set of the graph is an inaccessible and 
apparently patternless collection of lines. This 
is exactly what Szemerédi`s Regularity lemma 
gives us. The lemma says that no matter which 
regularity we require, we can always find a parti-
tion of the set of nodes into subsets such that the
edge set for any two of the subsets is sufficienly 
randomlike, i.e. have the required degree of reg-
ularity.
  We can consider a special case of the Regu-
larity lemma, where the graph has the following 

form.  Let 1,2,3,...,N and 0 be the nodes and let A 
be some subset of {1,2,3,...,N}. Suppose there are 
no edges between the nodes 1,2,3,...,N, and that 
we have an edge between a node m and 0 if and 
only if m is in A. A partition of the set of nodes 
will consist of one subset which contains 0, and 
the rest will be subsets of {1,2,3,..., N} which we 
assume are intervals. For simplicity we throw out 
all nodes except 0 from the subset containing 0. 
Thus the subsets are either (more or less) equal-
ly sized subintervals of {1,2,3,...,N}, or {0}. For 
two subintervalls of {1,2,3,..., N} the density is 0, 
since there are no internal edges in {1,2,3,..., N}, 
and the density of an interval and {0} is the frac-
tion #(AI{1,2,3,...,N})/#A. The Regularity lemma 
in this case says that for an arbitrary subset A of 
{1,2,3,..., N} we can split {1,2,3,..., N} in (almost) 
equally long subintervals such that for each subin-
terval I the subset AI I is randomlike, i.e. for any 
subinterval J of I the density of A in J is almost the 
same as the density of A in I.

we examine all pairs of subsets of  X and Y of a 
certain size. In the complete case, where all nodes 
in X are connected to all nodes in Y, we have full 
regularity. The other extreme, a graph with no edg-
es at all between X and Y, also gives full regularity. 
And, mayby a bit surprising, a randomlike edge 
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