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THE MINKOWSKI AND
WEYL PROBLEMS

In 1953 Luis Nirenberg published the
paper The Weyl and Minkowsk: Prob-
lem in Differential Geometry in the
Large. In this paper he solved two long-
standing open problems in differen-
tial geometry, the Minkowski problem
raised by Hermann Minkowski in the
paper Volumen und Oberflaiche pub-
lished in 1903 and the Weyl problem,
after Herman Weyl, in the paper Uber
die Bestimmung einer geschlossenen
konvexen Flache durch ithr Linienele-
ment from 1916.
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The Weyl and Minkowski Problems in Differential
Geometry in the Large
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Introdustion

The profilems of Wey! and Minkowski treated in this paper are two clnssical
embedding problems of differential geomeiry in the large. Soch problems
wanlly reduee to questhns concerning nonlinear differential squations and
those treated here lead to memlinear equations of elliptic chameter. Cons
sequently, muuch of the paper i concerned with questions in the field of olliptic
dfferental equations

The frst problem, which was considered by H. Weyl (23] in 1906, i the
problem of the realistion by & convex surface in Euclidean 3-space of p diffor-
ential grometric metric of positive eurvature given on the unit sphere. In
oiber words, one is given & positive definite quadratic form defined at avery
point of the unit sphere—which in losal parsmeters (i, v) takesthe form

s’ = Elu, o) du” + 2P, 8 cdu dv + G, o) &,

with ds" invariant under parameter change, and sch that the Gauss curvature
of the form is everywhere poriive. Dlocs there exist a closed conver sisrface
which may be mapped one-to-one oato the sphere so that its first fundnmental
form, im terms of parameters on the sphere, is da™?

The quadrutic form defines the Riemann metrie of an abstract Rieman-
inn manifold homeomorphic to the sphere, and the problem may be formulnted
% can this manifold be embodded into Fuclidean 3-apace?

A proof of the possibility of sach an embedding i= given here, under the
ssmymption that the ecefficients of the quadratic form di" possess derivatives
up to the fourth order.

I addition & sohition of the Minkowski problem (formulated in [20],
s sl [ chapter 13) is presented. This problem is the following: Given &
pasative function K{%) defined on the unit sphere (here & represents the inner
wmit mormeal to the sphere), does there exist a clossd comvex surface having
K} 2= its Gaists curvatisfe at the point on the surfass where the inner normsl
s =" The function K{H) is sssumed to sty the condition, which holds for
amy regular closed conves sarface,

[ K du () = 0,

T

The Minkowski Problem (1903).
Given a strictly positive real function
f defined on S?, find a strictly convex
compact surface ¥ C R? such that the
Gauss curvature of ¥ at the point z
equals f(n(x)), where n(z) denotes the
normal to X at x.

Hermann Minkowski (1864-1909)

Consider a sphere of radius R with center
C. The sphere is a convex surface, thus any
ray starting in the center intersects the sphere
in exactly one point. The curvature in the in-
tersection point is %, as it is in every other
point on the sphere. Minkowski suggested
that we define a function f on the sphere,
everywhere positive. An example of such a
function is the average annual rainfall on the
surface of the earth. This function is illus-
trated by a colouring of the surface, where
e.g. red means dry weather, and dark blue is
the colour of the rainy areas.

Now Minkowski asked if we can construct
a new surface, still convex, and such that the
curvature « in any direction n is precisely the
value of the given function f in that diresc-
tion, i.e. k(n) = f(n). In the red areas of the
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sphere, where the value of the "rainfall func-
tion” is less than the constant curvature #
we have to "flatten” out the sphere, and in
the blue areas it should be more curved. The
total curvature of the whole sphere is 47, so
the average value of the function will give the

”size” of the new surface.

The Weyl Problem (1916). Con-
sider a two-sphere S? and suppose g is a
Riemannian metric on S? whose Gauss
curvature is everywhere positive. Does
there exist a global C? isometric em-
bedding X : (S%,g) — (R3, o), where o
is the standard flat metric in R3?

Hermann Weyl (1885-1955)

The Weyl problem is closely ralated to the
Minkowski problem. Weyl defines a Rieman-
nian metric on a sphere. A metric is a more
general concept than a function. As a func-
tion it is also defined in each point on the
sphere, but not by one single value only. A
metric assigns a specific value to every direc-
tion in any point on the sphere. We illustrate
the concept by an example. Consider the sur-
face as a part of a landscape and introduce a
metric that expresses the differences in walk-
ing speed from various directions in a given

point. In a marsh the values are low com-
pared to the values on dry ground. Differ-
ent values in different directions from a given
point reflect variations in the ground in dif-
ferent directions. The distance between two
points in this metric is the time spent when
walking between the points. A plane with the
Euclidean metric has zero Gaussian curva-
ture, while the same plane equipped with the
how-difficult-is-it-to-walk-metric given above
might be rather curved. The Weyl problem
asks if given such a metric on a sphere, can we
deform the sphere such that, on the deformed
sphere, the ordinary distance corresponds to
the distance measured by the metric?

Figure 1: The different size of the
parts of the body reflects the density
of neurons. (Source: Natural History
Museum, London)

An illustration of the ideas of the
Minkowski and the Weyl problem is the fol-
lowing example: Neurons are not evenly dis-
tributed in the human body. Some parts of
the body, like our hands, our face and our
tongue are much more sensitive to sensations
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than other parts. The body has the high-
est density of neurons in those parts. The
Euclidean metric, named after the ancient
Greek mathematician Euclid, measures ordi-
nary distances between points and area of any
region of a surface. If you think of the neuron
density metric as the abstract metric and the
human body as the 2-sphere, then the weird
body in figure 1 illustrates the positive an-
swer to Weyl’s question. The different sizes
of the various body parts correspond to the
neuron density.

Nirenberg, with his fundamental embed-
ding theorems for the sphere S? in R?, hav-
ing prescribed Gauss curvature or Rieman-
nian metric, solved the classical problems
of Minkowski and Weyl (the latter being
also treated, simultaneously, by Pogorelov).
These solutions were important, both because
the problems were representative of a devel-
oping area, and because the methods created
were the right ones for further applications.
Nirenberg’s solution of the Minkowski prob-
lem was a milestone in global geometry.



