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During his short life, N.-H. Abel devoted himself to several topics characteristic

of the mathematics of his time. We note that, after an unsuccessful investigation

of the influence of the Moon on the motion of a pendulum, he chose subjects in

pure mathematics rather than in mathematical physics. It is possible to classify these

subjects in the following way:

1. solution of algebraic equations by radicals;

2. new transcendental functions, in particular elliptic integrals, elliptic functions,

abelian integrals;

3. functional equations;

4. integral transforms;

5. theory of series treated in a rigourous way.

The first two topics are the most important and the best known, but we shall

see that there are close links between all the subjects in Abel’s treatment. As the

first published papers are related to subjects 3 and 4, we will begin our study with

functional equations and the integral transforms.
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1 Functional Equations

In the year 1823, Abel published two norwegian papers in the first issue of Ma-

gasinet for Naturvidenskaberne, a journal edited in Christiania by Ch. Hansteen.

In the first one, titled Almindelig Methode til at finde Funktioner af een variabel

Størrelse, naar en Egenskab af disse Funktioner er udtrykt ved en Ligning mellom

to Variable (Œuvres, t. I, p. 1–10), Abel considers a very general type of functional

equation: V(x, y, ϕα, fβ, Fγ, . . . , ϕ′α, f ′β, F ′γ, . . . ) = 0, where ϕ, f, F, . . . are

unknown functions in one variable and α, β, γ, . . . are known functions of the two

independent variables x, y. His method consists in successive eliminations of the

unknown ϕ, f, F, . . . between the given equation V = 0 and the equations obtained

by differentiating this equation with α constant, then with β constant, etc. If, for

instance α = const, there is a relation between x and y, and y may be considered as

a function of x and the constant value of α; if n is the highest order of derivative of

ϕ present in V , it is possible to eliminate ϕα and its derivatives by differentiating V

n +1 times with α constant. We then eliminate fβ and its derivative, and so on, until

we arrive at a differential equation with only one unknown function of one variable.

Naturally, all the functions, known and unknown, are tacitly supposed indefinitely

differentiable.

Abel applies this to the particular case ϕα = f(x, y, ϕβ, ϕγ), where f, α, β and

γ are given functions and ϕ is unkown; he gets a first order differential equation

with respect to ϕ. For instance, the functional equation of the logarithm log xy =
log x + log y corresponds to the case where α(x, y) = xy, β(x, y) = x, γ(x, y) = y

and f(x, y, t, u) = t + u; differentiating with xy = const, we get 0 = xϕ′x − yϕ′y,

from which, with y = const, we get ϕ′x = c
x
, where c = yϕ′y. In the same way, the

functional equation for arctangent,

arctan
x + y

1 − xy
= arctan x + arctan y,

corresponds to α(x, y) = x+y

1−xy
, β(x, y) = x, γ(x, y) = y and f(x, y, t, u) = t + u;

differentiating with α constant gives 0 = (1 + x2)ϕ′x − (1 + y2)ϕ′y, whence ϕ′x =
c

1+x2 if c = (1 + y2)ϕ′y.

When β(x, y) = x, γ(x, y) = y and f(x, y, t, u) = t · u, we get first

ϕy · ϕ′x
∂α

∂y
− ϕx · ϕ′y

∂α

∂x
= 0,

whence ϕ′x
ϕx

as a known function of x if y is supposed constant. For α(x, y) = x + y,

this gives ϕ′x
ϕx

= c = ϕ′y
ϕy

, so log ϕx = cx(for ϕ(0) = 1) and ϕx = ecx ; for

α(x, y) = xy, ϕ′x
ϕx

= c
x
, so log ϕx = c log x (ϕ(1) = 1) and ϕx = xc.

All these examples were classical as is the next one, coming from mechanics. The

law of composition of two equal forces making an angle 2x leads to the functional

equation
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ϕx · ϕy = ϕ(x + y) + ϕ(x − y); (1)

where ϕx is the ratio of the resultant force to one of the two equal forces. Differ-

entiating with y + x = const, one gets ϕ′x · ϕy − ϕx · ϕ′y = 2ϕ′(x − y); another

differentiation, with x − y = const, gives ϕ′′x ·ϕy −ϕx ·ϕ′′y = 0. If y is regarded as

constant, this gives ϕ′′x +cϕx = 0 and ϕx = α cos(βx +γ) with α, β and γ constant.

From (1), one sees that α = 2 and γ = 0 and the problem imposes ϕ
(

π
2

)

= 0, so

β = 1 and ϕ(x) = 2 cos x.

Here is another case of application of Abel’s general method: the equation has

the form ψα = F(x, y, ϕx, ϕ′x, . . . , fy, f ′y, . . . ), where α is a given function of x

and y and ϕ, f, ψ are unknown functions. By differentiating with α constant, one

gets a relation between x, ϕx, ϕ′x, . . . and y, fy, f ′y, . . . , whence two differential

equations, with respect to ϕ and to f , considering successively y and x as constant;

if ϕ and f are determined, it is easy to determine ψ by the functional equation.

In particular, if ψ(x + y) = ϕx · f ′y + fy · ϕ′x, so that α(x, y) = x + y, the

differentiation with α constant gives ϕx · f ′′y− fy ·ϕ′′x = 0, and ϕx = a sin(bx +c),

fy = a′ sin(by + c) then ψ(x + y) = aa′b sin(b(x + y) + c + c′) so that ψα =
aa′b sin(bα + c + c′).

In the case of ψ(x+y) = f(xy)+ϕ(x−y), one gets 0 = f ′(xy)(y−x)+2ϕ′(x−y).

Abel takes xy = c as constant and writes ϕ′α = kα, where α = x − y and k = f ′(c)
2

,

so ϕα = k′ + k
2
α2; then he takes x − y = c constant and writes f ′β = c′ = 2ϕ′c

c
, so

fβ = c′′ + c′β. Finally

ψ(x + y) = c′′ + c′xy + k′ +
k

2
(x − y)2

or ψα = c′′+c′x(α−x)+k′+ k
2
(2x−α)2 = c′′+ k

2
α2 +k′+xα(c′−2k)+(2k−c′)x2

and we see that the condition c′ = 2k is necessary; ψα = k′ + c′′ + k
2
α2.

The third example is ϕ(x + y) = ϕx · fy + fx · ϕy, which gives

0 = ϕ′x · fy − ϕx · f ′y + f ′x · ϕy − fx · ϕ′y; (2)

if one supposes that f(0) = 1 and ϕ(0) = 0, one gets 0 = ϕ′x − ϕx · c + fx · c′ by

making y = 0 (c = f ′(0) and c′ = −ϕ′(0)); so fx = kϕx + k′ϕ′x and, substituting

this value in (2) and making y constant: ϕ′′x + aϕ′x + bϕx = 0 etc.

Abel returned to the study of functional equations in the paper “Recherche des

fonctions de deux quantités variables indépendantes x et y, telles que f(x, y), qui

ont la propriété que f(z, f(x, y)) est une fonction symétrique de z, x et y”, published

in German in the first volume of Crelle’s Journal in 1826 (Œuvres, t. I, p. 61–65).

The condition of the title characterises a composition law which is associative and

commutative; it may be written as f(x, y) = f(y, x), f(z, f(x, y)) = f(x, f(y, z)) =
f(y, f(z, x)) or

f(z, r) = f(x, v) = f(y, s) (3)

if f(x, y) = r, f(y, z) = v and f(z, x) = s. Differentiating with respect to x, to y

and to z and multiplying the results, one gets
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∂r

∂x

∂v

∂y

∂s

∂z
=

∂r

∂y

∂v

∂z

∂s

∂x
. (4)

But, by the definition of v, the quotient of ∂v
∂y

by ∂v
∂z

is a function ϕy when z is

regarded as constant; in the same manner, ϕx is the quotient of ∂s
∂x

by ∂s
∂z

, so (4)

becomes ∂r
∂x

ϕy = ∂r
∂y

ϕx and this gives r as an arbitrary function ψ of Φ(x) + Φ(y),

where Φ is a primitive of ϕ. So f(x, y) = ψ(Φ(x) + Φ(y)); putting this expression

in (3) and making Φz = Φy = 0 and Φx = p, one gets Φψp = p + c, where

c = Φψ(0), and then Φ f(x, y) = Φ(x) + Φ(y) + c or

Ψ f(x, y) = Ψ(x) + Ψ(y) (5)

where Ψ(x) = Φ(x)+c. In other words, Abel finds that f is conjugate to the addition

law by the function Ψ : he has determined the one-parameter groups.

The second volume of Crelle’s Journal (1827) (Œuvres, t. I, p. 389–398) contains

another paper of Abel on a functional equation:

ϕx + ϕy = ψ(x fy + y fx) = ψ(r), (6)

where r = x fy + y fx; this equation includes, as particular cases, the laws of

addition for log ( fy = 1
2

y, ϕx = ψx = log x) and for arcsin ( fy =
√

1 − y2,

ϕx = ψx = arcsin x). One has ϕ′x = ψ ′r · ∂r
∂x

, ϕ′y = ψ ′r · ∂r
∂y

, so ϕ′x · ∂r
∂y

= ϕ′y · ∂r
∂x

or

ϕ′y · ( fy + y f ′x) = ϕ′x · ( fx + x f ′y), (7)

whence, for y = 0,

aα − ϕ′x · ( fx + α′x) = 0, (8)

where a = ϕ′(0), α = f(0) and α′ = f ′(0), a differential equation which deter-

mines ϕ if f is known. Substituting in (7), one gets ( fx + α′x)( fy + y f ′x) =
( fy + α′y)( fx + x f ′y) or

1

y
(α′ fy − fy · f ′y − α′y f ′y) =

1

x
(α′ fx − fx · f ′x − α′x f ′x) = m,

necessarily constant. So

f ′x · ( fx + α′x) + (mx − α′ fx) = 0, (9)

which determines f ; as this differential equation is homogenenous, it is easily

integreted by putting fx = xz, in the form log c−log x = 1
2

log(z2−n2)+ α′
2n

log z−n
z+n

,

where m = −n2 and c is a constant of integration. One gets

c2n = ( fx − nx)n+α′
( fx + nx)n−α′

,
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with c = α, then ϕ by (8) and (6) is verified if ψx = ϕ
(

x
α

)

+ ϕ(0). Abel explicitly

treats the case in which n = α′ = 1
2
: fx = α + 1

2
x, then ϕx = aα log(α + x) + k

and ψx = 2k + aα log(α2 + x).

The relation α2n = ( fx−nx)n+α′
( fx+nx)n−α′

, which determines f , allows us to

express fx −nx, and then x and fx, in terms of fx +nx = v; turning back to (8), this

gives ϕx = aα
n+α′ log(cnx +c fx). When n = 0, the relation which determines f takes

the form eα′x =
(

fx

α

) fx

and we have ϕx = aα
α′ log cα+ aαx

fx
, ψx = 2aα

α′ log cα+ ax

f ( x
α )

.

The equation (6) signifies that α f
(

x fy+y fx

α

)

= fx · fy and Abel verifies that it is

satisfied. Another particular case is that in which α′ = ∞. When m is finite, (9)

reduces to x f ′x − fx = 0, so that fx = cx; when m is infinite and equals −pα′, (9)

becomes x fx − px − fx = 0 and fx = px log cx. In this last case, one gets by (7)

yϕ′y − xϕ′x = 0, whence xϕ′x = k constant and ϕx = k log mx (a new m) and then

ψ(pv log c2v) = k log m2v.

A memoir left unpublished by Abel is devoted to the equation ϕx + 1 = ϕ( fx),

where f is given and ϕ unknown (Œuvres, t. II, p. 36–39, mem. VI). Abel introduces

a function ψ such that fψy = ψ(y + 1); one may take ψ arbitrarily on the interval

[0, 1] and define ψ on [0,+∞[ by ψ(y + n) = f n(ψy) (and on ] − ∞, 0] by

ψ(y − n) = f −n(ψy) if f is bijective). For x = ψy, the functional equation

becomes 1 + ϕψy = ϕψ(y + 1), so that ϕψy = y + χy where χ is any periodic

function of y with period 1. Denoting the inverse function of ψ by `ψ, Abel gets

ϕx = `ψx + χ(`ψx).

As an example, he takes fx = xn and ψy = any
, so that `ψx = log log x−log log a

log n
and

ϕx =
log log x − log log a

log n
+ χ

(

log log x − log log a

log n

)

,

for instance ϕx = log log x

log n
if χ = 0 and a = e.

Abel treats in a similar manner the general equation F(x, ϕ( fx), ϕ(ψx)) = 0,

where F, f and ψ are given functions and ϕ is unknown. Supposing that fx = yt

and ψx = yt+1 or yt+1 = ψ(‘ fyt), one has F(‘ fyt, ut, ut+1) = 0, where ut = ϕyt ;

this difference equation has a solution ut = θt and ϕz = θ(‘yt). For instance the

equation (ϕx)2 = ϕ(2x) + 2 leads to (ut)
2 = ut+1 + 2 and, if u1 = a + 1

a
, this gives

ut = a2t−1 + 1

a2t−1 ; on the other hand yt+1 = 2yt , so that yt = c · 2t−1 (c constant)

and 2t−1 = x
c
. Finally, ϕx = bx + b−x (b = a1/c). As we see, this type of equations

is treated with a method different from the preceeding one, by reduction to finite

difference equation.

Another type of functional equation is related to the dilogarithm

ψx = x +
x2

22
+

x3

32
+ . . . +

xn

n2
+ . . . ,

which Abel studies in the posthumous memoir XIV (Œuvres, t. II, p. 189–193) after

Legendre’s Exercices de Calcul intégral. The study is based on the summation of
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the series (for |x| ≤ 1) in the form of an integral

ψx = −
∫

0

dx

x
log(1 − x) (10)

and Abel reproduces several functional equations given by Legendre, as for example

ψx + ψ(1 − x) =
π2

6
− log x · log(1 − x).

But he adds a remarkable new property:

ψ

(

x

1 − x
·

y

1 − y

)

= ψ

(

y

1 − x

)

+ ψ

(

x

1 − y

)

(11)

−ψy − ψx − log(1 − y) log(1 − x)

for (x, y) in the interior domain of the figure

In order to prove (11), Abel substitutes a
1−a

· y

1−y
for x in (10):

ψ

(

a

1 − a
·

y

1 − y

)

= −
∫ (

dy

y
+

dy

1 − y

)

log
1 − a − y

(1 − a)(1 − y)

= −
∫

dy

y
log

(

1 −
y

1 − a

)

+
∫

dy

y
log(1 − y)

−
∫

dy

1 − y
log

(

1 −
a

1 − y

)

+
∫

dy

1 − y
log(1 − a)

= ψ

(

y

1 − a

)

− ψy −
∫

dy

1 − y
log

(

1 −
a

1 − y

)

− log(1 − a) log(1 − y),
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where the remaining integral is computed by taking z = a
1−y

as variable:

∫

dy

1 − y
log

(

1 −
a

1 − y

)

=
∫

dz

z
log(1 − z) = −ψz = −ψ

(

a

1 − y

)

+ const.

The constant of integration is determined by taking y = 0 and is found to be ψa.

Abel was the first mathematician to give a general and (almost) rigourous proof

of Newton’s famous binomial formula

(1 + x)m = 1 + mx +
m(m − 1)

2
x2 +

m(m − 1)(m − 2)

2 · 3
x3 + . . . (12)

He published his demonstration in the first volume of Crelle’s Journal (1826,

Recherches sur la série 1 + mx + m(m−1)

2
x2 + m(m−1)(m−2)

2·3 x3 + . . . , Œuvres, t. I,

p. 218–250). He uses an idea of Euler, already exploited by Lagrange and Cauchy:

writing ϕ(m) the second member of (12), one proves that

ϕ(m + n) = ϕ(m)ϕ(n), (13)

so that ϕ(m) = Am = (1 + x)m for m rational as was observed by Euler. Lagrange

extended this proof to every value of m admitting that ϕ is an analytic function of m.

Cauchy used an analogous strategy for m real and |x| < 1 using the continuity of ϕ,

for which his proof was unfortunately incomplete. Abel considers the most general

case, with x and m complex, with |x| < 1 or |x| = 1 and Re m > −1 (if x = −1,

one needs Re m > 0).

For m = k + k′i, ϕ(m) = f(k, k′)(cos ψ(k, k′) + i sin ψ(k, k′)), with f , ψ

continuous functions of k, k′ real. The continuity is almost established by Abel

in his theorem V, but this theorem is not entirely correct. The concept of uniform

convergence did not exist at that time and it was not easy to give a general theorem

for the continuity of the sum of a series of continuous functions. The functional

equation (13) becomes

f(k + ℓ, k′ + ℓ′) = f(k, k′) f(ℓ, ℓ′); (14)

ψ(k + ℓ, k′ + ℓ′) = 2mπ + ψ(k, k′) + ψ(ℓ, ℓ′),

where m is an integer, which must be constant because of the continuity of ψ. In

a first step, Abel treats the functional equation for ψ; putting θk = ψ(k, k′ + ℓ′) =
2mπ + ψ(k, k′) + ψ(0, ℓ′) he gets

θk + θℓ = a + θ(k + ℓ), (15)

with a = 2mπ + ψ(0, k′) + ψ(0, ℓ′), whence

θk = ck + a, (16)

where c is a function of k′, ℓ′. Indeed, taking ℓ = k, 2k, . . . , ρk in (15) and adding

the results, Abel gets ρθk = (ρ − 1)a + θ(ρk) and θρ = ρ(θ(1) − a) + a for k = 1,
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ρ a natural integer; then, for k = µ

ρ
(µ, ρ ∈ N, ρ �= 0), ρθ

(

µ

ρ

)

= (ρ − 1)a + θµ

and θ
(

µ

ρ

)

= c
µ

ρ
+ a, with c = θ(1) − a. This formula is extended to the negative

values of k using θ(−k) = 2a − θk and, by continuity, to every real value of k. So

ψ(k, k′ + ℓ′) = ck + 2mπ + ψ(0, k′) + ψ(0, ℓ′), (17)

where c = θ(k′, ℓ′), a function of k′ and ℓ′. For k = 0, this gives

ψ(0, k′ + ℓ′) = 2mπ + ψ(0, k′) + ψ(0, ℓ′),

a functional equation which may be treated as (15) and which has the solution

ψ(0, k′) = β′k′ − 2mπ,

with an arbitrary constant β′; then (17) becomes

ψ(k, k′ + ℓ′) = θ(k′, ℓ′) · k + β′(k′ + ℓ′) − 2mπ,

also equal to 2mπ +ψ(k, k′)+ψ(0, ℓ′) = ψ(k, k′)+β′ℓ′ by (14), so that ψ(k, k′) =
Fk′ · k + β′k′ − 2mπ, with Fk′ = θ(k′, ℓ′) independent of ℓ′ and F(k′ + ℓ′) = Fk′ =
F(0) = β a constant. Finally

ψ(k, k′) = βk + β′k′ − 2mπ. (18)

To treat the functional equation (14) for f , Abel writes f(k, k′) = eF(k,k′) and

F(k + ℓ, k′ + ℓ′) = F(k, k′) + F(ℓ, ℓ′), a functional equation analog to that for ψ

with m = 0, so its solution is of the form F(k, k′) = δk + δ′k′, with two arbitrary

constant δ, δ′. Finally

ϕ(k + k′i) = eδk+δ′k′
(cos(βk + β′k′) + i sin(βk + β′k′)) (19)

and it remains to determine the constants β, β′, δ and δ′.
For k = 1 and k′ = 0, ϕ(1) = 1+ x = 1+α cos φ+ iα sin φ, where α = |x| < 1

and φ = arg x; this gives eδ cos β = 1 + α cos φ and eδ sin β = α sin φ, so that

eδ = (1 + 2α cos φ + α2)
1
2 and tan β =

α sin φ

1 + α cos φ
, β = s + µπ, (20)

with −π
2

≤ s ≤ π
2

and µ ∈ Z. Now, for k′ = 0 and any k, let p = fα and q = θα

designate the real and the imaginary part of the series ϕ(k), which are continuous

functions of α after Abel’s theorem IV (which is correct); one has

fα = eδk cos ks cos kµπ − eδk sin ks sin kµπ,

θα = eδk sin ks cos kµπ + εδκ cos ks sin kµπ

and cos kµπ = e−δk( fα·cos ks+θα·sin ks), sin kµπ = e−δk(θα·cos ks− fα·sin ks),

independent of α by continuity. For α = 0, eδ = 1 and s = 0 after (19) whereas

fα = 1 and θα = 0, so kµπ = 0 and
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fα = (1 + 2α cos φ + α2)
k
2 cos ks, θα = (1 + 2α cos φ + α2)

k
2 sin ks; (21)

this is Cauchy’s result for fα + iθα = |1 + x|k(cos ks + i sin ks) = (1 + x)k.

Abel now considers the case in which m = in is purely imaginary; then the

series (12) is convergent for any value of n by d’Alembert’s rule (which is Abel’s

theorem II) and Abel states its continuity as a function of n as a consequence of his

theorem V. He writes the real and imaginary parts of the series in the form

p = 1 + λ1α cos θ1 + . . . + λµαµ cos θµ + . . .

and q = λ1α sin θ1 + . . . + λµαµ sin θµ + . . . ,

where λµ = δ1δ2 . . . δµ, θµ = µφ + γ1 + γ2 + . . . + γµ and

ni − µ + 1

µ
= δµ(cos γµ + i sin γµ).

From (19) he knows that p = eδ′n cos β′n and q = eδ′n sin β′n; in order to determine

δ′ resp. β′, he takes the limits of eδ′n cos β′n−1
n

resp. eδ′n sin β′n
n

for n = 0. As δµ → µ−1
µ

and γµ → π (µ ≥ 2; for µ = 1, γ1 = π
2

), he gets
λµ

n
→ 1

µ
and γµ → µ(φ +π)− π

2

so

β′ = α cos φ −
1

2
α2 cos 2φ +

1

3
aα3 cos 3φ − . . . ,

δ′ = −α sin φ +
1

2
α2 sin 2φ −

1

3
α3 sin 3φ + . . .

Now, computing in the same manner the limits, for k = 0, of fα−1
k

and θα
k

, one gets

from (21)

δ = α cos φ −
1

2
α2 cos 2φ +

1

3
α3 cos 3φ − . . . (22)

and β = α sin φ −
1

2
α2 sin 2φ +

1

3
α3 sin 3φ − . . . ,

so that β′ = δ and δ′ = −β. The sum (19) of the series (12) for m = k + k′i is

eδk−βk′
(cos(βk + δk′) + i sin(βk + δk′))

with β and δ as in (20). Let us interpret Abel’s result: writing δ + iβ = log(1 + x),

one gets

m log(1 + x) = (k + ik′)(δ + iβ) = kδ − k′β + i(kβ + k′δ),

so that ϕ(m) = (1 + x)m .

Comparing (20) and (22), Abel gets

1

2
log(1 + 2α cos φ + α2) = α cos φ −

1

2
α2 cos 2φ +

1

3
α3 cos 3φ − . . .
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and

arctan
α sin φ

1 + α cos φ
= α sin φ −

1

2
α2 sin 2φ +

1

3
α3 sin 3φ − . . . ; (23)

by making α tend toward ±1, 1
2

log(2±2 cos φ) = ± cos φ− 1
2

cos 2φ± 1
3

cos 3φ−. . .

and 1
2
φ = sin φ − 1

2
sin 2φ + 1

3
sin 3φ − . . . for −π < φ < π. If φ = π

2
and

−1 ≤ α ≤ 1 in (23), one gets Gregory’s series arctan α = α − 1
3
α3 + 1

5
α5 − . . .

Taking x = i tan φ and m real in the binomial series, Abel’s finds

cos mφ = (cos φ)m

(

1−
m(m−1)

1 · 2
(tan φ)2+

m(m−1)(m−2)(m−3)

1 · 2 · 3 · 4
(tan φ)4−. . .

)

,

sin mφ = (cos φ)m

(

m tan φ −
m(m − 1)(m − 2)

1 · 2 · 3
(tan φ)3 + . . .

)

for −π
4

≤ φ ≤ π
4

(for φ = ±π
4

, m must be > −1).

Now, taking |x| = 1 and m > −1, he finds as the real part of

(1 + x)m(cos α − i sin α) :

cos α +
m

1
cos(α − φ) +

m(m − 1)

1 · 2
cos(α − 2φ) + . . .

= (2 + 2 cos φ)
m
2 cos

(

α −
mφ

2
+ mρπ

)

where ρ is an integer such that |φ − 2ρπ| ≤ π (with the restriction m > 0 in

case of equality). The substitutions φ = 2x and α = mx, mx + π
2
, m

(

x + π
2

)

or

m
(

x + π
2

)

− π
2

give Abel various formulae, for instance

(2 cos x)m cos 2mρπ = cos mx +
m

1
cos(m − 2)x +

m(m − 1)

1 · 2
cos(m − 4)x + . . .

(2 cos x)m sin 2mρπ = sin mx +
m

1
sin(m − 2)x +

m(m − 1)

1 · 2
sin(m − 4)x + . . .

for 2ρπ − π
2

≤ x ≤ 2ρπ + π
2

. Abel was the first to prove rigourously such formulae

for m non integer; in a letter to his friend Holmboe (16 January 1826, Œuvres, t. II,

p. 256), he states his result and alludes to the unsuccessful attempts of Poisson,

Poinsot, Plana and Crelle.

Other examples of functional equations in Abel’s work may be mentioned, as

the famous Abel theorem (see §5), which may be interpreted in this way. In a letter

to Crelle (9 August 1826, Œuvres, t. II, p. 267), Abel states his theorem for genus 2

in a very explicit manner: he considers the hyperelliptic integral ϕ(x) =
∫

(α+βx)dx√
P(x)

where P is a polynomial of degree 6; then Abel’s theorem is the functional equation

ϕ(x1) + ϕ(x2) + ϕ(x3) = C − (ϕ(y1) + ϕ(y2)), where x1, x2 and x3 are independant

variables, C is a constant and y1, y2 are the roots of the equation
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y2 −
(

c2
2 + 2c1 − a4

2c2 − a5

− x1 − x2 − x3

)

y +
c2−a

x1x2x3

2c2 − a5

= 0,

with P(x) = a + a1x + a2x2 + a3x3 + a4x4 + a5x5 + x6 and c + c1x j + c2x2
j +

x3
j =

√

P(x j) for j = 1, 2, 3. Abel says that this functional equation completely

characterises the function ϕ.

Abel discovered how to express the elliptic functions as quotients of two entire

functions of the type of Weierstrass’ σ-function; there is an allusion to that in the

introduction to his Précis d’une théorie des fonctions elliptiques, published in the

fourth volume of Crelle’s Journal (1829, Œuvres, t. I, p. 527–528) and in a letter to

Legendre (25 November 1828, Œuvres, t. II, p. 274–275). The elliptic function λ(θ)

is defined by

θ =
λθ

∫

0

dx

∆(x, c)
, where ∆(x, c) = ±

√

(1 − x2)(1 − c2x2),

and λθ = ϕθ

fθ
where the entire functions ϕ and f are solutions of the system of

functional equations ϕ(θ ′ + θ) · ϕ(θ ′ − θ) = (ϕθ · fθ ′)2 − (ϕθ ′ · fθ)2, f(θ ′ + θ) ·
f(θ ′ − θ) = ( fθ · fθ ′)2 − c2(ϕθ ·ϕθ ′)2. This system is partially solved in a notebook

of 1828, with x and y in place of θ ′ and θ; supposing ϕ odd and f even and

taking the second derivative with respect to x at x = 0, Abel finds the equations

f ′′y+ fy−( f ′y)2 = a( fy)2 −c2b(ϕy)2 and −ϕ′′y+ϕy+(ϕ′y)2 = b( fy)2 −a(ϕy)2

with a = f(0) · f ′′(0) and b = (ϕ′0)2. If it is supposed that a = 0 and b = 1,

this reduces to ( f ′y)2 − f ′′y · fy = c2(ϕy)2, (ϕ′y)2 − ϕ′′y · ϕy = ( fy)2. Again

differentiating four times at x = 0, Abel obtains the derivatives of f up to the 4th

order and ϕ, but his computation, aimed to find differential equations for f and ϕ,

stops here.

Two posthumous papers by Abel are devoted to differential equations of Riccati

type. In the first one, Sur l’équation différentielle dy + (p + qy + ry2)dx = 0, où

p, q et r sont des fonctions de x seul (Œuvres, t. II, p. 19–25), Abel shows how to

transform this equation in another one of the form dy + (P + Qy2)dx = 0. Two

methods are proposed. The first one, by putting y = z + r ′ with r ′ = − q

2r
, which

gives dz + (P + Qz2)dx = 0 with P = p − q2

4r
− dq

dx
1
2r

+ dr
dx

q

2r2 and Q = r.

The second one, which is classical, by putting y = zr ′ with r ′ = e−
∫

qdx ; this

gives P = pe
∫

qdx and Q = re−
∫

qdx . Abel observes that when pe
∫

qdx = are−
∫

qdx or

e
∫

qdx =
√

ar
p

, the equation, which is written dy+
(

p+ 1
2

(

dr
rdx

− dp

pdx

)

y+ry2
)

dx =0,

may be integrated in finite terms, giving y = −
√

p

r
tan

(∫ √
r pdx

)

. For example,

the equation dy +
(

1
x

− y2

x

)

dx = 0 has a solution of the form y = 1−cx2

1+cx2 and

the equation dy +
(

xm + 1
2
(n − m)

y

x
+ xn y2

)

dx = 0 has a solution of the form

y = −x
m−n

2 tan
(

c + 2
m+n+2

x
1
2 (m+n+2)

)

; in the case in which n = −m − 2, this
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solution becomes y = −xm+1 tan(log k′x). Another easy case of integration is given

by the relations p

c
= q

2a
= r; in this case y = −a +

√
a2 − c 1+e− 2

c

√
a2−c

∫

pdx

1−e− 2
c

√
a2−c

∫

pdx
.

Abel explains how to solve the equation when a particular solution y′ is known.

Putting y = z+y′, he finds dz+((q+2ry′)z+rz2)dx = 0 and y = y′+ e−
∫

(q+2ry′)dx
∫

e−
∫

(q+2ry′)rdx
.

For example the equation dy +
(

1

x2 + ay

x
+ cy2

)

dx = 0 has the particular solution

y′ =
(

1−a
2c

±
√

(

1−a
2c

)2 − 1
c

)

1
x

and this leads to the general solution

y =





1 − a

2c
±

√

(

1 − a

2c

)2

−
1

c





1

x
+

kx
−

(

1±
√

(1−a)2−4c
)

C ± ck√
(1−a)2−4c

x∓
√

(1−a)2−4c
.

Other cases of integration are found by Euler’s method of integrating factor: the

expression zdy + z(p + qy2)dx is a complete differential when ∂z
∂x

= ∂(z(p+qy2))

∂y

or, if z = er , when ∂r
∂x

= (p + qy2) ∂r
∂y

+ 2qy. Abel tries with r = a log(α + βy)

with a constant and α, β functions of x only. He finds the conditions aα′ − aβp =
aβ′ − 2αq = aβq + 2βq = 0, where α′, β′ are the derivatives of α, β. Thus the

equation dy +
(

α′
β

− β′

α
y2

)

dx = 0 admits the integrating factor z = 1

(α+βy)2 and the

solution y = − α
β

+ 1

β2

(

C−
∫ β′

αβ2 dx

) .

In the second paper, Abel considers the differential equation

(y + s)dy + (p + qy + ry2)dx = 0,

which is reduced to the form zdz + (P + Qz)dx = 0 by the substitution

y = α + βz with α = −s and β = e−
∫

rdx . One has P = (p − qs + rs2)e2
∫

rdx

and Q =
(

q − 2rs − ds
dx

)

e
∫

rdx . If P = 0, this equation has the solution z =
∫ (

2rs + ds
dx

− q
)

e
∫

rdxdx so that the equation

(y + s)dy + (qs − rs2 + qy + ry2)dx = 0

has for solution y = −s + e−
∫

rdx
∫ (

2rs + ds
dx

− q
)

e
∫

rdxdx. When Q = 0, the

equation in z has the solution z =
√

2
∫

(qs − p − rs2)e2
∫

rdxdx and the equation

(y + s)dy +
(

p +
(

2rs +
ds

dx

)

y + ry2

)

dx = 0

has for solution y = −s + e−
∫

rdx

√

2
∫ (

rs2 − p + sds
dx

)

e2
∫

rdxdx.

In order that z = er be an integrating factor for the equation

ydy + (p + qy)dx = 0,
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we must impose y ∂r
∂x

− (p+qy) ∂r
∂y

−q = 0. For r = α+βy, this gives the conditions
dβ

dx
= dα

dx
− qβ = pβ + q = 0, so β = −c, α = −c

∫

qdx and −cp + q = 0.

For r = α + βy + γy2, one finds γ = c, β = 2c
∫

qdx, q + 2cp
∫

qdx = 0

and α = 2c
∫

qdx
∫

qdx −
∫

qdx
∫

qdx
. When q = 1, we find that the equation ydy +

(

1
c(x+a)

+ y
)

dx = 0 admits the integrating factor 1
x+a

e− c
2 (x+y+a)2

. More generally,

for r = α + α1 y + α2 y2 + . . . + αn yn , one finds n + 2 conditions dαn

dx
= 0 =

dαn−1

dx
−nqαn = dαn−2

dx
−(n−1)qαn−1−n pαn = . . . = dα

dx
−qα1−2pα2 = q+pα1 = 0

for the n + 1 coefficients αk; so there is a relation between p and q. For n = 3, Abel

finds

q + 6cp

∫

qdx

∫

qdx + 3cp

∫

pdx = 0.

A function r = 1
α+βy

leads to the conditions dβ

dx
+ β2q = dα

dx
− βq + 2αβq =

α2q − βp = 0 and the equation ydy +
(

(

C

(
∫

qdx)
2 + 1

2

)2

q
∫

qdx + qy

)

dx admits

the integrating factor e
1

α+βy with β = 1
∫

qdx
and α = C

(
∫

qdx)
2 + 1

2
.

Another form tried by Abel is r = a log(α + βy); he finds that ydy −
(

a+1

a2 q − qy
)

dx = 0 has the integrating factor
(

(a+1)c
a

∫

qdx + cy
)a

. More gen-

erally r = a log(y + α) + a′ log(y + α′) gives a new form of differential equation

integrable by the factor er .

2 Integral Transforms and Definite Integrals

The second Norwegian paper of Abel, titled Opløsning af et Par Opgaver ved Hjelp af

bestemte Integraler (1823, Œuvres, t. I, p. 11–27), studies in its first part the integral

equation ψa =
x=a
∫

x=0

ds
(a−x)n where ψ is a given function, s an unknown function of x

and n < 1.

In the case where n = 1
2
, s is interpreted as the length of a curve to be found,

along which the fall of a massive point from the height a takes a time equal to ψa.

Let the curve be KCA, the initial position of the falling body be the point C and

its initial velocity be 0; when the falling body is in M its velocity is proportional to√
a − x, where a is the total height AB and x is the height AP. So the fall along an

infinitesimal arc MM′ takes a time dt proportional to − ds√
a−x

, where s = AM is the

curvilineal abscissa along the curve, and the total duration of the fall is proportional

to the integral
x=a
∫

x=0

ds√
a−x

.

Abel’s equation is probably the first case of an integral equation in the history of

mathematics; before that, Euler had introduced in his Institutiones Calculi Integralis

the general idea to solve a differential equation by a definite integral, for instance by
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the so called Laplace transform and Fourier (1811) and Cauchy (1817) had studied

the Fourier transform and its law of inversion.

Abel supposes that s has a development in power series with respect to x:

s =
∑

α(m)xm ; differentiating and integrating term by term, he obtains ψa =
∑

mα(m)
a
∫

0

xm−1dx
(a−x)n . One has m

a
∫

0

xm−1dx
(a−x)n = mam−n

1
∫

0

tm−1dt
(1−t)n = Γ(1−n)Γ(m+1)

Γ(m−n+1)
am−n ,

using the Eulerian function Γ , for which Abel refers to Legendre’s Exercices de

Calcul intégral; so

ψa = Γ(1 − n)
∑

α(m)am−n Γ(m + 1)

Γ(m − n + 1)
.

Let now ψa =
∑

β(k)ak (ψ is implicitly supposed to be analytic); by identification,

Abel gets α(n+k) = Γ(k+1)

Γ(1−n)Γ(n+k+1)
β(k) = β(k)

Γn·Γ(1−n)

1
∫

0

tkdt

(1−t)1−n , so that

s =
∑

α(m)xm =
xn

Γn · Γ(1 − n)

1
∫

0

∑

β(k)(xt)kdt

(1 − t)1−n

=
xn

Γn · Γ(1 − n)

1
∫

0

ψ(xt)dt

(1 − t)1−n
=

xn sin nπ

π

1
∫

0

ψ(xt)dt

(1 − t)1−n

and, in the particular case where n = 1
2
, s =

√
x

π

1
∫

0

ψ(xt)dt√
1−t

.

Abel applies this result in the case where ψa = can (c constant, and the expo-

nent n not to be confused with that of a−x in the general problem, which is now 1
2
), in

which s = Cxn+ 1
2 , with C = c

π

1
∫

0

tndt√
1−t

; then dy =
√

ds2 − dx2 = dx
√

kx2n−1 − 1,

where k =
(

n + 1
2

)2
C2, so

y =
∫

dx
√

kx2n−1 − 1 = k′ + x
√

k − 1
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in the particular case where n = 1
2
; in this case, the curve KCA solution of the

problem is a straight line. The isochronic case, where ψa = c constant is another

interesting case; here n = 0 and s = C
√

x (C = 2c
π

), equation characterising the

cycloid. This problem was initially solved by Huygens (1673).

Turning back to the general case Abel gives another interpretation of the solution

as a derivative of ψ of non-integral order −n. Indeed, if ψx =
∑

α(m)xm and if k is

a natural integer,

dkψ

dxk
=

∑

α(m) Γ(m + 1)

Γ(m − k + 1)
xm−k;

in which the right hand side is still meaningfull when k is not a natural integer, and

then

Γ(m + 1)

Γ(m − k + 1)
=

1

Γ(−k)

1
∫

0

tmdt

(1 − t)1+k
,

so that the right hand side becomes 1

xkΓ(−k)

1
∫

0

∑

α(m)(xt)m dt

(1−t)k = 1

xkΓ(−k)

1
∫

0

ψ(xt)dt

(1−t)k , whence

the definition of d−nψ

dx−n = xn

Γn

1
∫

0

ψ(xt)dt

(1−t)1−n and the solution s = 1
Γ(1−n)

d−nψ

dx−n of the initial

problem. The derivative of order n of s = ϕx is naturally 1
Γ(1−n)

ψx, which means

that

dnϕ

dan
=

1

Γ(1 − n)

a
∫

0

ϕ′xdx

(a − x)n
(n < 1);

for n = 1
2
, ψx =

√
π d

1
2 s

dx
1
2

.

The idea of a derivative of non-integral order comes from Leibniz; it was based

on the analogy, discovered by Leibniz, between the powers and the differentials in the

celebrated formula for dn(xy), which has the same coefficient as (x+y)n = pn(x+y)

in Leibniz’ notation. The general binomial formula, with exponent e non necessarily

integral, suggests to Leibniz a formula for de(xy) as an infinite series (letter to

the Marquis de l’Hospital, 30 September 1695). Abel’s procedure is an extension

of a formula given by Euler in 1730: dn(ze)

dzn = ze−n

1
∫

0

dx(−lx)e

1
∫

0

dx(−lx)e−n

, where e and n are

arbitrary numbers and l notes the logarithm. At Abel’s time, some other authors also

considered derivatives of arbitrary order, as Fourier and Cauchy, but the theory really

began with Liouville in 1832 and Riemann in 1847.

At the end of this part, Abel reports that he has solved the more general integral

equation ψa = ∫ϕ(xa) fx ·dx, where ψ and f are given functions and ϕ is unknown.
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Abel published a German version of this study in Crelle’s Journal (vol. I, 1826,

Œuvres, t. I, p. 97–101). He finds the solution without any use of power series,

starting from the Eulerian integral of the first kind
1
∫

0

yα−1dy

(1−y)n = Γα·Γ(1−n)

Γ(α+1−n)
, which gives

a
∫

0

zα−1dz
(a−z)n = Γα·Γ(1−n)

Γ(α+1−n)
aα−n and

x
∫

0

da

(x − a)1−n

a
∫

0

zα−1dz

(a − z)n
=

Γα · Γ(1 − n)

Γ(α + 1 − n)

x
∫

0

aα−nda

(x − a)1−n

= Γn · Γ(1 − n)
Γα

Γ(α + 1)
xα =

xα

α
Γn · Γ(1 − n).

Then, if fx = ∫ϕα · xαdα, one has
x
∫

0

da

(x−a)1−n

a
∫

0

f ′z.dz

(a−z)n = Γn · Γ(1 − n) fx and

fx =
sin nπ

π

x
∫

0

da

(x − a)1−n

a
∫

0

f ′zdz

(a − z)n
.

Therefore, in the original problem ϕa =
x=a
∫

x=0

ds
(a−x)n , one has

sin nπ

π

x
∫

0

ϕada

(x − a)1−n
=

sin nπ

π

x
∫

0

da

(x − a)1−n

a
∫

0

ds

(a − x)n
= s.

In this paper, there is no mention of derivatives of non-integral order.

The second part of the Norwegian paper is devoted to the proof of the integral

formula:

ϕ(x + y
√

− 1) + ϕ(x − y
√

− 1) =
2y

π

+∞
∫

−∞

e−v2 y2
vdv

+∞
∫

−∞

ϕ(x + t)e−v2t2
dt,

giving as a particular case cos y = 1√
π

+∞
∫

−∞
e
−t2+ 1

4
y2

t2 dt when ϕt = et , x = 0. Abel

uses the developments

ϕ(x+y
√

−1)+ϕ(x−y
√

−1) = 2

(

ϕx−
ϕ′′x

1 · 2
y2+

ϕ′′′′x

1 · 2 · 3 · 4
y4−. . .

)

,

ϕ(x + t) = ϕx + tϕ′x +
t2

1 · 2
ϕ′′x +

t3

1 · 2 · 3
ϕ′′′x + . . .

and the definite integrals
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+∞
∫

−∞

e−v2t2
t2ndt =

Γ
(

2n+1
2

)

v2n+1
,

+∞
∫

−∞

e−v2 y2
v−2ndv = Γ

(

1 − 2n

2

)

y2n−1.

The last two parts of the paper give summation formulae by means of definite

integrals. From the development 1
et−1

= e−t + e−2t + e−3t + . . . and the value
∞
∫

0

e−kt t2n−1dt = Γ(2n)

k2n , Abel deduces
∞
∫

0

t2n−1dt
et−1

= Γ(2n)ζ(2n); the Eulerian formula

ζ(2n) = 22n−1π2n

Γ(2n+1)
An , where An is the n-th Bernoulli number, then gives An =

2n

22n−1π2n

∞
∫

0

t2n−1dt
et−1

= 2n

22n−1

∞
∫

0

t2n−1dt
eπt−1

. Using these values in the Euler–MacLaurin sum

formula
∑

ϕx =
∫

ϕx.dx − 1
2
ϕx + A1

ϕ′x
1·2 − A2

ϕ′′′x
1·2·3·4 + . . . and Taylor series for

ϕ
(

x ± t
2

√
−1

)

, Abel finds

∑

ϕx =
∫

ϕxdx −
1

2
ϕx +

∞
∫

0

ϕ
(

x + t
2

√
−1

)

− ϕ
(

x − t
2

√
−1

)

2
√

−1

dt

eπt − 1
. (24)

This formula was already published in 1820 by Plana in the Memoirs of the Turin

Academy; Plana found it by the same type of formal manipulations as Abel. It was

rigorously established by Schaar in 1848, using Cauchy’s calculus of residues.

As particular applications of this formula, Abel gives the values of some definite

integrals: for ϕx = emx ,
∞
∫

0

sin mtdt
eπt−1

= 1
em−1

− m + 1
2
, for ϕx = 1

x
,

∞
∫

0

tdt
(

x2 + 1
4
t2

)

(eπt − 1)
= 2 log x −

1

x
− 2

∑ 1

x
+ 3 +

∞
∫

0

tdt
(

1 + 1
4
t2

)

(eπt − 1)

and for ϕx = sin ax,
∞
∫

0

eat−e−at

eπt−1
dt = 1

a
− cot a.

The second Abel’s summation formula is

ϕ(x + 1) − ϕ(x + 2) + ϕ(x + 3) − ϕ(x + 4) + . . . (25)

=
1

2
ϕx + 2

∞
∫

0

dt

eπt − e−πt

ϕ(x + t
√

−1) − ϕ(x − t
√

−1)

2
√

−1
.

In order to obtain this, Abel puts a priori the first member equal to 1
2
ϕx + A1ϕ

′x +
A2ϕ

′′x + . . . with unknown coefficients A1, A2, . . . ; when ϕx = ecx
√

−1, one sees

that A2 = A4 = . . . = 0 and 1
2

tan 1
2
c = A1c − A3c3 + A5c5 − . . . . On the other

hand, 1
2

tan 1
2
c =

∞
∫

0

ect−e−ct

eπt−e−πt dt after Legendre (Exercices de Calcul Intégral, t. II,

p. 186), so the series for ect − e−ct gives the A2n+1 in the form of integrals and the



38 C. Houzel

reasoning ends as for the first formula. As an application, Abel takes ϕx = 1
x+1

and

gets
∞
∫

0

tdt

(1+t2)(eπt−e−πt )
= 1

2
log 2 − 1

4
.

In the second volume of Magasinet for Naturvidenskaberne (1825), Abel pub-

lished another derivation of the formula (24) and he extended it to the case of iterated

sums (Œuvres, t. I, p. 34–39):

n
∑

ϕx = An−1,nΓn
n

∫ϕx · dxn − An−2,nΓ(n − 1)
n−1

∫ ϕx · dxn−1

+ . . . + (−1)n−1 ∫ϕx · dx + (−1)n 1

2
ϕx

+2(−1)n−1

∞
∫

0

Pdt

e2πt − 1

ϕ(x + t
√

−1) − ϕ(x − t
√

−1)

2
√

−1

+2(−1)n−1

∞
∫

0

Qdt

e2πt − 1

ϕ(x + t
√

−1) + ϕ(x − t
√

−1)

2

where the coefficients A0,n , A1,n , . . . , An−1,n are defined by the development of pn =
1

(ev−1)n in the form (−1)n−1
(

A0,n p + A1,n
dp

dv
+ A2,n

d2 p

dv2 + . . . + An−1,n
dn−1 p

dvn−1

)

and

P = A0,n − A2,nt2 + A4,nt4 − . . . , Q = A1,nt − A3,nt3 + A5,nt5 − . . . ; by derivating

pn , Abel establishes recursive relations between the Ak,n: A0,n+1 − A0,n = 0,

A1,n+1 − A1,n = 1
n

A0,n , A2,n+1 − A2,n = 1
n

A1,n , . . . , An−1,n+1 − An−1,n = 1
n

An−2,n ,

An,n+1 = 1
n

An−1,n . The proof of this formula is based on the expression of ϕ as

a Laplace transform: ϕx = ∫ evx fv · dv, which naturally restricts the generality; it

gives

n
∑

ϕx =
∫

evx fv

(ev − 1)n
dv.

As an example, for ϕx = eax and n = 2, this formula gives:

1

(ea − 1)2
=

1

2
−

1

a
+

1

a2
− 2

∞
∫

0

dt · sin at

e2πt − 1
− 2

∞
∫

0

tdt · cos at

e2πt − 1
.

Another example, with ϕx = 1

x2 and n = 1, leads to

1

a2
+

1

(a + 1)2
+

1

(a + 2)2
+ . . . =

1

2a2
+

1

a
+ 4a

∞
∫

0

tdt

(e2πt − 1)(a2 + t2)2
;

in particular, for a = 1, π2

6
= 3

2
+ 4

∞
∫

0

tdt

(e2πt−1)(1+t2)2 .
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A posthumous paper of Abel is devoted to the study of the Laplace transform; its

title is Sur les fonctions génératrices et leurs déterminantes (Œuvres, t. II, p. 67–81,

mem. XI) and the study is purely formal. Abel writes an arbitrary function ϕ of

several variables in the form:

ϕ(x, y, z, . . . ) = ∫ exu+yv+z p+... f(u, v, p, . . . )dudvdp . . . ,

and he calls ϕ the generating function of f and f the determinant function of ϕ,

in abbreviation ϕ = fg f and f = D ϕ. The following properties of the transform

are established in the case of one variable only: linearity, effect of a translation

Dϕ(x + a) = eavDϕx and fg(eavDϕx) = ϕ(x + a), effect of derivations or inte-

grations D
(

dnϕx

dxn

)

= vn · Dϕx, fg(vnDϕx) = dnϕx

dxn , D
(∫ n

ϕxdxn
)

= v−nDϕx and

fg(v−nDϕx) =
∫ n

ϕxdxn , effect of finite differences or iterated sums

D∆n
αϕx = (evα − 1)n fv, fg((evα − 1)n fv) = ∆n

αϕx, DΣn
α(ϕx) = (eva − 1)−n fv

and fg((evα − 1)−n fv) = Σn
α(ϕx).

Abel also states the effect of the composition of a translation, a derivation and

a certain number of finite differences. More generally, if the operator δ is defined by

δ(ϕx) = An,α

dnϕ(x + α)

dxn
+ An′,α′

dn′
ϕ(x + α′)

dxn′ + . . . , (26)

where An,α, An′,α′, . . . are constant coefficients, one has D(δϕx) = ψv · Dϕx where

ψv = An,αv
nevα + An′,α′vn′

evα′ + . . . ,

and Abel considers the composition of an arbitrary number of operators of the type

of δ.

Abel clearly understood how the Laplace transform gives a symbolic calculus

on the operators (26); he uses this calculus to obtain developments in series. For

instance, he explains that the Taylor series for ϕ(x +α) amounts to the development

evα = 1+vα+ v2

1·2α2+ v3

1·2·3α3+. . . in the determinant function. A polynomial relation

between the multiplicators ψ,ψ1, . . . , ψµ associated to operators δ, δ1, . . . , δµ gives

an analogous relation between the operators themselves. Let us consider the operator

δϕx = ϕ(x + α) + aϕx; one has Dδϕx = (evα + a) fv where f is the determinant

function of ϕ. Since

(a + evα)n = an + nan−1evα +
n(n − 1)

2
an−2e2vα + . . .

= envα + nae(n−1)vα +
n(n − 1)

2
a2e(n−2)vα + . . . ,

δnϕx = anϕx + nan−1ϕ(x + α) +
n(n − 1)

2
an−2ϕ(x + 2α) + . . .

= ϕ(x+nα)+naϕ(x+(n−1)α)+
n(n−1)

2
a2ϕ(x+(n−2)α)+. . . ;
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Abel writes down both forms, which are the same for n a natural integer, but which

may be extended (under different conditions for the convergence of the series) to

other values of n; he says nothing about that, but he may have envisaged this type of

extension as we saw that he was interested by derivatives of non-integral order and we

know that Cauchy defined pseudo-differential operators with constant coefficients us-

ing the Fourier transform (1827). For a = −1, ∆n
αϕx = ϕ(x+nα)−nϕ(x+(n−1)α)

+ n(n−1)

2
ϕ(x + (n − 2)α) − . . .

Now let δ1ϕx = ϕ(x + α1) + a1ϕx, so that Dδn
1ϕx = yn fv with y = evα1 + a1;

if z = evα + a then y = a1 + (z − a)
α1
α and it is possible to get a development

yn =
∑

Am zm . Therefore δn
1ϕx =

∑

Amδmϕx. In the case where α1 = α,

δn
1ϕx = (a1 − a)nϕx + n(a1 − a)n−1δϕx +

n(n − 1)

2
(a1 − a)n−2δ2ϕx + . . .

= δnϕx + n(a1 − a)δn−1ϕx +
n(n − 1)

2
(a1 − a)2δn−2ϕx + . . .

For a1 = 0, ϕ(x +nα) = δnϕx −naδn−1ϕx + n(n−1)

2
a2δn−2ϕx + . . . and if moreover

a = −1, ϕ(x + nα) = ∆n
αϕx + n∆n−1

α ϕx + n(n−1)

2
∆n−2

α ϕx + . . . , a formula given

by Euler (1755).

When δϕx = ϕ(x+α)−aϕx and δ1ϕx = cϕx+k dϕx

dx
, Dδϕx = (evα−a) fv = z fv

and Dδn
1ϕx = (c + kv)n fv = yn fv; as y = c + k

α
log(z + a) = c + k

α
log a +

k
α

(

z
a

− 1
2

z2

a2 + 1
3

z3

a3 − . . .
)

, one may write a development yn =
∑

Am zm , which

gives δn
1ϕx =

∑

Amδmϕx. For example, if c = 0, a = k = 1 and n = 1, dϕx

dx
=

1
α

(

∆ϕx − 1
2
∆2ϕx + 1

3
∆3ϕx − . . .

)

, a formula given by Lagrange (1772). Starting

from a formula of Legendre:

bv = 1 + lb · vcv + lb(lb − 2lc)
(vcv)2

2
+ lb(lb − 3lc)2 (vcv)3

2 · 3
+ . . . ,

in which he makes b = eα and c = eβ , Abel obtains in the same way

ϕ(x + α) = ϕx + α
dϕ(x + β)

dx
+

α(α − 2β)

2
·

d2ϕ(x + 2β)

dx2
(27)

+
α(α − 3β)2

2 · 3
·

d3ϕ(x + 3β)

dx3
+ . . .

and, in particular, ϕx = ϕ(0) + xϕ′(β) + x(x−2β)

2
ϕ′′(2β) + x(x−3β)2

2·3 ϕ′′′(3β) + . . .

Abel published the special case of (27) in which ϕx = xm , m a natural integer, in

the first issue of Crelle’s Journal (Œuvres, t. I, p. 102–103); there, he proves the

formula by induction on m and he observes that, when β = 0, the result reduces to

the binomial formula. Another special case given in the posthumous memoir is that

in which ϕx = log x; then

log(x+α) = log x+
α

x+β
+

1

2
·

α

x+2β
·

2β − α

x+2β
+

1

3
·

α

x+3β
·
(

3β − α

x+3β

)2

+. . .
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and in particular log(1+α) = α
1+β

+ 1
2
· α

1+2β
·
(

1 − 1+α
1+3β

)

+ 1
3
· α

1+3β
·
(

1 − 1+α
1+3β

)2

+. . .

When α = 3β, this reduces to log(1 + 2β) = 2β

1+β
+ 2

3
· β3

(1+3β)3 + 1
4

· 2·23·β4

(1+4β)4 + . . . ;

for example, log 3 = 1 +
∑

n≥3

2
n

1
n+1

(

n−2
n+1

)n−1
.

Abel also considers the developments of ∆n
αϕx, dnϕx

dxn and dn(exϕx)

dxn in power series

with respect to n; they are respectively obtained from the developments of

(evα − 1)n = exp(n log(evα − 1)), vn = en log v, and (1 + v)n = en log(1+v).

The coefficients respectively contain the powers of log(evα −1), log v and log(1+v),

so we must identify the operators δ respectively defined by

δϕx = fg(log(evα − 1) fv), log v · fv and (1 + v) fv;

these operators are respectively δϕx = αϕ′x+∫ dα
∑

α ϕ′x, δ1ϕx− 1
2
δ2

1ϕx+ 1
3
δ3

1ϕx−
. . . , where δ1ϕx = ϕ′x − ϕx, and ϕ′x − 1

2
ϕ′′x + 1

3
ϕ′′′x − . . .

In the continuation of the paper, Abel expresses this last operator in the integral

form

δϕx =
0

∫

∞

e−tdt

t
(ϕ(x − t) − ϕx),

which is obtained in the following manner: the equality

a′
∫

a

e(1−αv)tdt = (eae−aαv − ea′
e−a′αv)

1

1 − αv

= ea(e−aαv + αve−aαv + α2v2e−aαv + . . . )

−ea′
(e−a′αv + αve−a′αv + α2v2e−a′αv + . . . )

leads to

a′
∫

a

etϕ(x − αt)dt =

ea(ϕ(x − αa) + αϕ′(x − αa) + α2ϕ′′(x − αa) + α3ϕ′′′(x − αa) + . . . )

−ea′
(ϕ(x − αa′) + αϕ′(x − αa′) + α2ϕ′′(x − αa′) + α3ϕ′′′(x − αa′) + . . . ),

from which Abel deduces ϕ′x −αϕ′′x +α2ϕ′′′x −α3ϕ′′′′x + . . . =
0
∫

−∞
etϕ′(x + αt)dt

and, integrating with respect to α, αϕ′x − 1
2
α2ϕ′′x + 1

3
α3ϕ′′′x − 1

4
α4ϕ′′′′x + . . . =

0
∫

−∞

et dt
t

(ϕ(x + αt) − ϕx).
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Other classical relations between functions give Abel relations between opera-

tors. So the Fourier series 1
2

= cos αv − cos 2αv + cos 3αv − . . . leads to

ϕx = ϕ(x + α) + ϕ(x − α) − ϕ(x + 2α) − ϕ(x − 2α) + ϕ(x + 3α) + ϕ(x − 3α)

−ϕ(x + 4α) − ϕ(x − 4α) + . . .

and the formula (evα − 1)−1 − (vα)−1 + 1
2

= 2
∞
∫

0

dt·sin(vαt)

e2πt−1
leads to

∑

α
ϕx −

1

α

∫

ϕxdx +
1

2
ϕx = 2

∞
∫

0

dt

e2πt − 1
·
ϕ(x + αt

√
−1) − ϕ(x − αt

√
−1)

2
√

−1
,

which is formula (24). From the formula
∞
∫

0

dt·cos(αvt)

1+t2 = π
2

e−αv given by Legendre

(Exercices de Calcul intégral, t. II, p. 176), Abel deduces

∞
∫

0

dt

1 + t2
·
ϕ(x + αt

√
−1) + ϕ(x − αt

√
−1)

2
=

π

2
ϕ(x ± α), (28)

for instance
∞
∫

0

dt

(1+t2)(α2t2+x2)
= π

2
· 1

x(x±α)
for ϕx = 1

x
(where it is easy to verify that

± must be taken as +); when ϕx = 1
xn , ϕ(x+αt

√
−1)+ϕ(x−αt

√
−1)

2
= z−n cos nφ, where

z =
√

x2 + α2t2 and φ = arctan αt
x

, so that
∞
∫

0

dt

1+t2 · cos(n arctan αt
x )

(x2+α2t2)
n
2

= π
2

· 1
(x+α)n or

π

2
·

xn−1

α(x + α)n
=

π
2

∫

0

(cos φ)n cos nφdφ

(x sin φ)2 + (α cos φ)2
, (29)

which reduces to

π

2n+1
=

π
2

∫

0

(cos φ)n cos nφdφ (30)

when α = x.

From the integrals
∞
∫

0

dt·sin at

t(1+t2)
= π

2
(1 − e−a) and

∞
∫

0

tdt·sin at

1+t2 = π
2

e−a also given

by Legendre, Abel deduces π
2
(ϕx − ϕ(x ± α)) =

∞
∫

0

dt

t(1+t2)
· ϕ(x+αt

√
−1)−ϕ(x−αt

√
−1)

2
√

−1
,

π
2
ϕ(x±α) =

∞
∫

0

tdt

1+t2 · ϕ(x+αt
√

−1)−ϕ(x−αt
√

−1)

2
√

−1
and π

2
ϕx =

∞
∫

0

dt
t
· ϕ(x+αt

√
−1)−ϕ(x−αt

√
−1)

2
√

−1
;

for ϕx = 1
xn this gives

π
2
∫

0

dφ

sin φ
(cos φ)n−1 sin nφ = π

2
by putting t = x tan φ.
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In an addition to this paper (Sur quelques intégrales définies, Œuvres, t. II,

p. 82–86, mem. XII), Abel develops (cos φ)n cos nφ and xn

(x+α)n in power series with

respect to n and, comparing the coefficients of the powers of n in (29), he gets the

values of some definite integrals:

π

2
·

1

xα
=

π
2

∫

0

dφ

x2 sin2 φ + α2 cos2 φ
,
π

2
·

1

xα
log

x

x+α
=

π
2

∫

0

log cos φdφ

x2 sin2 φ + α2 cos2 φ
,

π

2
·

1

xα

(

log
x

x + α

)2

=

π
2

∫

0

((log cos φ)2 − φ2)dφ

x2 sin2 φ + α2 cos2 φ
.

Putting ϕx = (log x)n and αt
x

= tan φ in (28), he gets

π
2

∫

0

dφ

x2 sin2 φ + α2 cos2 φ
·

(

log x
cos φ

+ φ
√

−1
)n

+
(

log x
cos φ

− φ
√

−1
)n

2

=
π

2xα
(log(x + α))n

and

π
2
∫

0

dφ
((

log x
cos φ

+ φ
√

−1
)n

+
(

log x
cos φ

− φ
√

−1
)n)

= π(log 2)n when x =

α = 1.

More generally, putting t = tan u in (28) we get

π
2

∫

0

du(ϕ(x + α
√

−1 tan u) + ϕ(x − α
√

−1 tan u))

= πϕ(x + α) and

π
2
∫

0

du(ϕ(1 +
√

−1 tan u) + ϕ(1 −
√

−1 tan u)) = πϕ(2) when

x = α = 1; for ϕx = xm

1+αxn , this gives

π
2

∫

0

(cos u)n−m(cos mu(cos u)n + α cos(n − m)u)

(cos u)2n + 2α cos nu(cos u)n + α2
du =

π

2
·

2m

1 + α2n
.

In (30) Abel replaces n by a fraction m
n

and he puts φ

n
= θ, so that

π

2n
·

1

2
m
n

=

π
2

∫

0

(cos nθ)
m
n cos mθdθ = −

cos π
2n

∫

1

n
√

(ψy)m fy
dy

√

1 − y2
,
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where ψy = yn − n(n−1)

2
yn−2(1 − y2) + n(n−1)(n−2)(n−3)

2·3·4 yn−4(1 − y2)2 − . . . and

fy = ym − m(m−1)

2
ym−2(1− y2)+ m(m−1)(m−2)(m−3)

2·3·4 ym−4(1− y2)2 − . . . ; for instance

π
8

· 1
4√

2
= −

cos π
8

∫

1

4
√

1 − 8y2 + 8y4 ydy√
1−y2

=

sin π
8

∫

0

dz
4
√

1 − 8z2 + 8z4.

All this early work of Abel gives evidence of his carefull study of Legendre’s

Exercices de Calcul intégral, which also were his source of inspiration for the theory

of elliptic integrals.

A paper on a related subject was published by Abel in the second volume

of Crelle’s Journal (1827, Œuvres, t. I, p. 251–262) under the title Sur quelques

intégrales définies. It contains some applications of the relation discovered by Abel

y2
dy1
da

− y1
dy2
da

= e−
∫

pda, where y1 and y2 are two solutions of the linear dif-

ferential equation d2u

da2 + p
dy

da
+ qy = 0. For instance y1 =

1
∫

0

(x+a)γ+1dx

x1−α(1−x)1−β and

y2 =
1
∫

0

(x+a)α+β+γ dx

xβ(1−x)α
are solutions of the hypergeometric equation

d2 y

da2
−

(

α + γ

a
+

β + γ

1 + a

)

dy

da
+

(γ + 1)(α + β + γ)

a(a + 1)
y = 0,

and this leads to the relation

(α + β + γ)

1
∫

0

dx(x + a)γ+1

x1−α(1 − x)1−β
·

1
∫

0

dx(x + a)α+β+γ−1

xβ(1 − x)α

−(γ + 1)

1
∫

0

dx(x + a)γ

x1−α(1 − x)1−β
·

1
∫

0

dx(x + a)α+β+γ

xβ(1 − x)α
= Caα+γ (1 + a)β+γ ,

where the constant C is determined by making a = ∞:

C = −(α + β − 1)

1
∫

0

dx · xα−1(1 − x)β−1 ·
1

∫

0

dx · x−β(1 − x)−α

= π(cot απ + cot βπ).

In the same way y1 =
∞
∫

0

x−αdx

(1+x)β(x+a)γ
and y2 =

∞
∫

0

xβ−1dx

(1+x)1−α(x+a)α+β+γ−1 are so-

lutions of the hypergeometric equation d2 y

da2 +
(

α+γ

a
− β+γ

1−a

)

dy

da
+ γ(1−α−β−γ)

a(1−a)
y = 0

and we get the relation
∞
∫

0

x−αdx

(1+x)β(x+a)γ
= Γ(1−α)Γ(α+β+γ−1)

Γβ·Γγ

∞
∫

0

xβ−1dx

(1+x)1−α(x+a)α+β+γ−1 .

The function y3 =
∞
∫

0

x−βdx
(1+x)α(x+1−a)γ

= (1 − a)−β−γ+1
∞
∫

0

x−βdx
(1+x)γ (1+(1−a)x)α

is a third
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solution of the same hypergeometric equation, which, combined with y1 =

a−α−γ+1
∞
∫

0

x−αdx

(1+x)γ (1+ax)β
, gives

a

∞
∫

0

x−αdx

(1 + x)γ (1 + ax)β
·

∞
∫

0

x−βdx

(1 + x)γ+1(1 + (1 − a)x)α

+(1 − a)

∞
∫

0

x−βdx

(1 + x)γ (1 + (1 − a)x)α
·

∞
∫

0

x−αdx

(1 + x)γ+1(1 + ax)β

=
Γ(1 − α)Γ(1 − β)

Γ(γ + 1)
Γ(α + β + γ − 1).

When β = 1−α, this relation becomes a
∞
∫

0

x−αdx

(1+x)γ (1+ax)1−α ·
∞
∫

0

xα−1dx

(1+x)γ+1(1+(1−a)x)α
+

(1−a)
∞
∫

0

x−αdx

(1+x)γ+1(1+ax)1−α ·
∞
∫

0

xα−1dx
(1+x)γ (1+(1−a)x)α

= π
γ ·sin απ

; in particular, for α = γ = 1
2
,

a

∞
∫

0

dx
√

x(1 + x)(1 + ax)
·

∞
∫

0

dx
√

x(1 + x)3(1 + (1 − a)x)

+(1 − a)

∞
∫

0

dx
√

x(1 + x)(1 + (1 − a)x)
.

∞
∫

0

dx
√

x(1 + x)3(1 + ax)
= 2π.

As Abel observes, these integrals are elliptic and the change of variable x = tan2 ϕ

transforms the preceding relation in

a

π
2

∫

0

dϕ
√

1 − (1 − a) sin2 ϕ
·

π
2

∫

0

dϕ · cos2 ϕ
√

1 − a sin2 ϕ

+(1 − a)

π
2

∫

0

dϕ
√

1 − a sin2 ϕ
·

π
2

∫

0

dϕ · cos2 ϕ
√

1 − (1 − a) sin2 ϕ
=

π

2
,

which is equivalent to Legendre’s famous relation between the complete integrals of

the first two kinds (Exercices de Calcul intégral, t. I, p. 61). Legendre had proved

this relation by a very similar method.

Starting from the integral y =
x
∫

0

dx·xα−1(1−x)β−1

(x+a)α+β , Abel finds that dy

da
+

(

α
1+a

+ β

a

)

y

= − xα(1−x)β

a(1+a)(x+a)α+β , so that y · aβ(1 + a)α = C − xα(1 − x)β
a
∫

0

da·aβ−1(1+a)α−1

(a+x)α+β , where

C is independent of a and is found to be Γα·Γβ

Γ(α+β)
by making a = ∞. Thus
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Γα · Γβ

Γ(α + β)
= aβ(1 + a)α

x
∫

0

dx · xα−1(1 − x)β−1

(x + a)α+β

+xα(1 − x)β

a
∫

0

da · aβ−1(1 + a)α−1

(a + x)α+β
;

when α + β = 1, this gives

(1 + a)α

aα−1

x
∫

0

dx · xα−1(1 − x)−α

x + a
+

xα

(1 − x)α−1

a
∫

0

da · a−α(1 + a)α−1

a + x
=

π

sin πα
.

The integral y =
1
∫

0

e−ax xα−1(1 − x)β−1dx (α, β > 0) is a solution of the conflu-

ent hypergeometric equation d2 y

da2 +
(

α+β

a
+ 1

)

dy

da
+ α

a
y = 0, and so is

y1 =
∞

∫

1

e−ax xα−1(1 − x)β−1dx

= e−a

∞
∫

0

e−ax xβ−1(1 + x)α−1dx = e−aa−α−β+1

∞
∫

0

e−x xβ−1(a + x)α−1dx

(a > 0). Abel derives from that the formula

Γα · Γβ =
1

∫

0

e−ax xα−1(1 − x)β−1dx ·
∞

∫

0

e−x xβ−1(a + x)αdx

−a

1
∫

0

e−ax xα(1 − x)β−1dx ·
∞

∫

0

e−x xβ−1(a + x)α−1dx,

and, for β = 1 − α,

π

sin πα
=

1
∫

0

dx

x
e−ax

(

x

1 − x

)α

·
∞

∫

0

e−xdx
(

1 +
a

x

)α

−a

1
∫

0

dx · e−ax

(

x

1 − x

)α

·
∞

∫

0

dx

x + a
e−x

(

1 +
a

x

)α

.

As a last example, Abel considers the integrals y =
∞
∫

0

eax−x2
xα−1dx and y1 =

∞
∫

0

e−ax−x2
xα−1dx (α > 0), solutions of the differential equation d2 y

da2 − 1
2
a

dy

da
− 1

2
αy

= 0, which is related to the so called Weber equation. The corresponding relation is
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1

2
Γ

(

α + 1

2

)

Γ
(α

2

)

e
a2

4 =
∞

∫

0

eax−x2
xα−1dx ·

∞
∫

0

e−ax−x2
xαdx

+
∞

∫

0

eax−x2
xαdx ·

∞
∫

0

e−ax−x2
xα−1dx.

In a posthumous paper Les fonctions transcendantes
∑

1

a2 ,
∑

1

a3 ,
∑

1

a4 , . . . ,
∑

1
an

exprimées par des intégrales définies (Œuvres, t. II, p. 1–6), Abel gives integral

formulae for these finite sums, extended from 1 to a − 1. He also studies their

continuation to non integral values of a and n. As
dn

∑ 1
a

dan = (−1)n2 · 3 · · · n
∑

1

an+1 ,

one has

∑ 1

an
= (−1)n−1 dn−1L(a)

2 · 3 · · · (n − 1)dan−1

where L(a) =
∑

1
a

=
1
∫

0

xa−1−1
x−1

dx. From this Abel deduces

L(a, α) =
∑ 1

aα
=

1

Γ(α)

1
∫

0

xa−1 − 1

x − 1

(

l
1

x

)α−1

dx (31)

for any value of α. Substituting xa−1 = 1−(a−1)
(

l 1
x

)

+ (a−1)2

2

(

l 1
x

)2− (a−1)3

2·3
(

l 1
x

)3+
. . . and 1

1−x
= 1 + x + x2 + . . . , he obtains

L(a, α) =
a − 1

1
α

(

1 +
1

2α+1
+

1

3α+1
+

1

4α+1
+ . . .

)

−
(a − 1)2

1 · 2
α(α + 1)

(

1 +
1

2α+2
+

1

3α+2
+

1

4α+2
+ . . .

)

+
(a − 1)3

1 · 2 · 3
α(α + 1)(α + 2)

(

1 +
1

2α+3
+

1

3α+3
+

1

4α+3
+ . . .

)

= α(a − 1)L ′(α + 1) −
α(α + 1)

2
(a − 1)2L ′(α + 2)

+
α(α + 1)(α + 2)

2 · 3
(a − 1)3L ′(α + 3) − . . . ,

where L ′(α) = L(∞, α) = 1 + 1
2α + 1

3α + 1
4α + . . . is the zeta function.

Putting m
a

instead of a in (31), Abel deduces L
(

m
a
, α

)

= − 1
Γ(α)

1
∫

0

(

l 1
y

)α−1

y−1
dy +

aα

Γ(α)

1
∫

0

ym−1
(

l 1
y

)α−1

ya−1
dy or, writing ym−1

ya−1
= A

1−cy
+ A′

1−c′y + . . . in the hypothesis

m − 1 < a,
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L
(m

a
, α

)

= aα(AL ′(α, c) + A′L ′(α, c′) + A′′L ′(α, c′′) + . . . )

where L ′(α, c) = 1 + c
2α + c2

3α + c3

4α + . . .

The following paper Sur l’intégrale définie
1
∫

0

xa−1(1 − x)c−1
(

l 1
x

)α−1
dx (Œuvres,

t. II, p. 7–13) is related to the same subject; it gives developments in series for

La and associated functions. When α = 1, the integral is equal to Γa·Γc
Γ(a+c)

. As

the logarithmic derivative of Γa is equal to La − C, where C is the Euler con-

stant, Abel deduces from this
1
∫

0

xa−1(1 − x)c−1lxdx = (La − L(a + c)) Γa·Γc
Γ(a+c)

,

1
∫

0

xa−1(1 − x)c−1l(1 − x)dx = (Lc − L(a + c)) Γa·Γc
Γ(a+c)

. For c = 1, this gives

1
∫

0

xa−1lxdx = − 1

a2 ,
1
∫

0

xa−1l(1 − x)dx = − L(1+a)

a
. Developing (1 − x)c−1 in se-

ries, Abel obtains

(La − L(a + c))
Γa · Γc

Γ(a + c)
=

1

a2
− (c − 1)

1

(a + 1)2
+

(c − 1)(c − 2)

2

1

(a + 2)2

−
(c − 1)(c − 2)(c − 3)

2 · 3

1

(a + 3)2
+ . . . (32)

For example, if c = 1 − a, −La · π
sin aπ

= 1

a2 + a

(a+1)2 + a(a+1)

2(a+2)2 + a(a+1)(a+2)

2·3(a+3)2 + . . . ,

which becomes 2π log 2 = 22 + 2

32 + 3

2·52 + 3·5
22·3·72 + 3·5·7

23·3·4·92 + . . . when a = 1
2

for

L 1
2

= −2 log 2. When a = 1 − x and c = 2x − 1, L(1 − x) − Lx = π cot πx and

−π cot πx
Γ(1 − x)Γ(2x − 1)

Γx
=

1

(1 − x)2
−

2x − 2

(2 − x)2
+

(2x − 2)(2x − 3)

2(3 − x)2

−
(2x − 2)(2x − 3)(2x − 4)

2 · 3(4 − x)2
+ . . .

From (32) Abel deduces an expression of L(a+c)−La
L(a+c)−Lc

as a quotient of two series and,

making c = 1, L(1 + a) = a − a(a−1)

22 + a(a−1)(a−2)

2·32 − . . . . Thus

π cot πa = L(1 − a) − La

= −
(

2a − 1 +
a(a + 1) − (a − 1)(a − 2)

22

+
a(a + 1)(a + 2) − (a − 1)(a − 2)(a − 3)

2 · 32
+ . . .

)

.

The integral of the title, with α an integer, is obtained by successive differentiations

with respect to a:
1
∫

0

xa−1(1 − x)c−1
(

l 1
x

)α−1
dx = Γα

(

1
aα − c−1

1
1

(a+1)α
+ (c−1)(c−2)

1·2
1

(a+2)α
− . . .

)

.
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Taking the successive logarithmic derivatives, Abel sees that this integral has an

expression in terms of the sums La, L ′a =
∑

1

a2 , L ′′a =
∑

1

a3 , . . . ; for example

1
∫

0

xa−1(1 − x)c−1

(

l
1

x

)3

dx =
(

2(L ′′(a + c) − L ′′a)

+3(L ′(a + c) − L ′a)(L(a + c) − La)

+(L(a + c) − La)3

)

Γa · Γc

Γ(a + c)
.

The successive differentiations of the equality
1
∫

0

(

l 1
x

)α−1
dx = Γα with respect to

α give the formula
1
∫

0

(

l 1
x

)α−1 (

ll 1
x

)n
dx = dnΓα

dαn , whence
∞
∫

0

(lz)ne−z
1
α dz = αn+1 dnΓα

dαn

by a change of variable. Abel deduces from this the formulae
∞
∫

0

e−xα
dx = 1

α
Γ

(

1
α

)

(n = 0) and
∞
∫

0

l
(

1
x

)

e−xα
dx = − 1

α2 Γ
(

1
α

) (

L
(

1
α

)

− C
)

(n = 1; C is the Euler

constant), which leads to

∞
∫

0

e−nx xα−1lxdx =
Γα

nα
(Lα − C − log n).

A third posthumous paper is titled Sommation de la série y = ϕ(0) + ϕ(1)x +
ϕ(2)x2 + ϕ(3)x3 + . . . + ϕ(n)xn , n étant un entier positif fini ou infini, et ϕ(n) une

fonction algébrique rationnelle de n (Œuvres, t. II, p. 14–18). Abel decomposes

ϕ in terms of one of the forms Anα, B

(a+n)β
. He has first to sum f(α, x) = x +

2αx2 + 3αx3 + . . . + nαxn; this is done using the identities f(α, x) = xd f(α−1,x)

dx
and

f(0, x) = x(1−xn)

1−x
. Then Abel considers

Fα =
1

aα
+

x

(a + 1)α
+

x2

(a + 2)α
+ . . . +

xn

(a + n)α
=

∫

dx · xα−1 F(α − 1)

xα
,

for which F(0) = 1−xn+1

1−x
. The formula (10) for the dilogarithm is thus obtained

when α = 2, n = ∞ and a = 1.

3 Algebraic Equations

We know that in 1821 Abel thought he had found a method to solve the general quintic

equation by radicals; when he discovered his error and proved that such a solution

was impossible, he wrote a booklet in french with a demonstration, Mémoire sur les



50 C. Houzel

équations algébriques, où l’on démontre l’impossibilité de la résolution de l’équation

générale du cinquième degré (Christiania, 1824; Œuvres, t. I, p. 28–33).

The impossibility of an algebraic solution for the general quintic equation had

already been published by P. Ruffini (1799, 1802, 1813), but his demonstration was

incomplete for he supposed without proof that the radicals in a hypothetical solution

were necessarily rational functions of the roots. Abel, who did not know of Ruffini’s

work, began with a proof of this fact.

Supposing the root of

y5 − ay4 + by3 − cy2 + dy − e = 0 (33)

of the form

y = p + p1 R
1
m + p2 R

2
m + . . . + pm−1 R

m−1
m , (34)

with m a prime number and p, p1, . . . , pm−1, R of an analogous form (R
1
m is

a chosen exterior radical in a hypothetical solution by radicals and it is supposed

that it is not a rational function of a, b, . . . , p, p1, . . . ), Abel first replaces R by R
pm

1

in order to have an expression of the same form with p1 = 1. Putting (34) in the

equation, he gets a relation P = q + q1 R
1
m + q2 R

2
m + . . . + qm−1 R

m−1
m = 0, with

coefficients q, q1, . . . polynomial in a, b, c, d, e, p, p2, . . . , R. These coefficients

are necessarily 0 for otherwise the two equations zm − R = 0 and q + q1z + . . . +
qm−1zm−1 = 0 would have some common roots, given by the annulation of the

greatest common divisor

r + r1z + . . . + rkzk

of their first members. Since the roots of zm − R = 0 are of the form αµz, where

z is one of them and αµ is an m-th root of 1, we get a system of k equations

r +αµr1z + . . .+αk
µrkzk = 0 (0 ≤ µ ≤ k −1 and α0 = 1), from which it is possible

to express z as a rational function of r, r1, . . . (and the αµ). Now the rk are rational

with respect to a, b, . . . , R, p, p2, . . . and we get a contradiction for, by hypothesis,

z is not rational with respect to these quantities.

The relation P = 0 being identical, the expression (34) is still a root of (33)

when R
1
m is replaced by αR

1
m , α an arbitrary m-root of 1, and it is easy to see that

the m expressions so obtained are distinct; it results that m ≤ 5. Then (34) gives us

m roots yk (1 ≤ k ≤ m) of (33), with R
1
m , αR

1
m , . . . , αm−1 R

1
m in place of R

1
m , and

we have

p =
1

m
(y1 + y2 + . . . + ym),

R
1
m =

1

m
(y1 + αm−1 y2 + . . . + αym),

p2 R
2
m =

1

m
(y1 + αm−2 y2 + . . . + α2 ym),

. . . ,

pm−1 R
m−1

m =
1

m
(y1 + αy2 + . . . + αm−1 ym);
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this proves that p, p2, . . . , pm−1 and R
1
m are rational functions of the roots of (33)

(and α). Now if, for instance R = S + v
1
n + S2v

2
n + . . . + Sn−1v

n−1
n , the same

reasoning shows that v
1
n , S, S2, . . . are rational functions of the roots of (33) and

continuing in this manner, we see that every irrational quantity in (34) is a rational

function of the roots of (33) (and some roots of 1).

Abel next shows that the innermost radicals in (34) must be of index 2. Indeed

if R
1
m = r is such a radical, r is a rational function of the 5 roots y1, y2, . . . , y5 and

R is a symmetric rational function of the same roots, which may be considered as

independent variables for (33) is the general quintic equation. So we may arbitrarily

permute the yk in the relation R
1
m = r and we see that r takes m different values;

a result of Cauchy (1815) now says that m = 5 or 2 and the value 5 is easily

excluded. We thus know that r takes 2 values and, following Cauchy, it has the form

v(y1 − y2)(y1 − y3) . . . (y2 − y3) . . . (y4 − y5) = vS
1
2 , where v is symmetric and S

is the discriminant of (33).

The next radicals are of the form r =
(

p + p1S
1
2

)
1
m

, with p, p1 symmetric. If

r1 =
(

p − p1S
1
2

)
1
m

is the conjugate of r, then rr1 =
(

p2 − p2
1S

1
2

)
1
m = v must be

symmetric (otherwise m would be equal to 2 and r would take on 4 values, which is

not possible). Thus

r + r1 =
(

p + p1S
1
2

)
1
m + v

(

p + p1S
1
2

)− 1
m = z

takes m values which implies that m = 5 and z = q + q1 y + q2 y2 + q3 y3 + q4 y4,

with q, q1, . . . symmetric. Combining this relation with (33), we get y rationally in

z, a, b, c, d and e, and so of the form

y = P + R
1
5 + P2 R

2
5 + P3 R

3
5 + P4 R

4
5 , (35)

with P, R, P2, P3 and P4 of the form p+ p1S
1
2 , p, p1 and S rational in a, b, c, d and e.

From (35) Abel draws R
1
5 = 1

5
(y1 + α4 y2 + α3 y3 + α2 y4 + αy5) =

(

p + p1S
1
2

)
1
5
,

where α is an imaginary fifth root of 1; this is impossible for the first expression

takes 120 values and the second only 10.

Euler (1764) had conjectured a form analogous to (35) for the solutions of the

quintic equation, with R given by an equation of degree 4. In a letter to Holmboe

(24 October 1826, Œuvres, t. II, p. 260), Abel states that if a quintic equation is

algebraically solvable, its solution has the form x = A + 5
√

R + 5
√

R′ + 5
√

R′′ + 5
√

R′′′

where R, R′, R′′, R′′′ are roots of an equation of degree 4 solvable by quadratic

radicals; this is explained in a letter to Crelle (14 March 1826, Œuvres, t. II, p. 266)

for the case of a solvable quintic equation with rational coefficients, the solution

being x = c+ Aa
1
5 a

2
5
1 a

4
5
2 a

3
5
3 + A1a

1
5
1 a

2
5
2 a

4
5
3 a

3
5 + A2a

1
5
2 a

2
5
3 a

4
5 a

3
5
1 + A3a

1
5
3 a

2
5 a

4
5
1 a

3
5
2 , where
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a = m + n
√

1 + e2 +
√

h(1 + e2 +
√

1 + e2),

a1 = m − n
√

1 + e2 +
√

h(1 + e2 −
√

1 + e2),

a2 = m + n
√

1 + e2 −
√

h(1 + e2 +
√

1 + e2),

a3 = m − n
√

1 + e2 −
√

h(1 + e2 −
√

1 + e2),

A = K +K ′a+K ′′a2+K ′′′aa2, A1 = K +K ′a1+K ′′a3+K ′′′a1a3, A2 = K +K ′a2+
K ′′a + K ′′′aa2 and A3 = K + K ′a3 + K ′′a1 + K ′′′a1a3, and c, h, e, m, n, K, K ′, K ′′

and K ′′′ are rational numbers.

Abel published a new version of his theorem in the first volume of Crelle’s

Journal (1826, Œuvres, t. I, p. 66–87). In the first paragraph of this paper, Abel

defines the algebraic functions of a set of variables x′, x′′, x′′′, . . . They are built

from these variables and some constant quantities by the operations of addition,

multiplication, division and extraction of roots of prime index. Such a function

is integral when only addition and multiplication are used, and is then a sum of

monomials Ax′m1 x′′m2 . . . It is rational when division is also used, but not the

extraction of roots, and is then a quotient of two integral functions. The general

algebraic functions are classified in orders, according to the number of superposed

radicals in their expression; a function f(r ′, r ′′, . . . , n′√
p′, n′′√

p′′, . . . ) of order µ,

with r ′, r ′′, . . . , p′, p′′, . . . of order < µ and f rational, such that none of the nk
√

pk

is a rational function of the r and the other nℓ
√

pℓ, is said to be of degree m if it

contains m radicals nk
√

pk. Such a function may be written f(r ′, r ′′, . . . , n
√

p) with

p of order µ − 1, r ′, r ′′, . . . of order ≤ µ and degree ≤ m − 1, and f rational;

it is then easy to reduce it to the form q0 + q1 p
1
n + q2 p

2
n + . . . + qn−1 p

n−1
n , with

coefficients q0, q1, q2, . . . rational functions of p, r ′, r ′′, . . . , so of order ≤ µ and

degree ≤ m − 1, p
1
n not a rational function of these quantities. Abel carries out the

supplementary reduction to the case q1 = 1. In order to do this, he chooses an index

µ such that qµ �= 0 and puts qn
µ pµ = p1, which will play the role of p. The starting

point of his preceding paper has been completely justified.

In the second paragraph, Abel proves that if an equation is algebraically solvable,

one may write its solution in a form in which all the constituent algebraic expressions

are rational functions of the roots of the equation. The proof is more precise than

that of the 1824 paper, but follows the same lines. The coefficients of the equation

are supposed to be rational functions of certain independent variables x′, x′′, x′′′, . . .
In the third paragraph, Abel reproduces the proof of Lagrange’s theorem (1771)

according to which the number of values that a rational function v of n letters may

take under the n! substitutions of these letters is necessarily a divisor of n! and

Cauchy’s theorem (1815) which says that if p is the greatest prime number ≤ n, and

if v takes less than p values, then it takes 1 or 2 values. Indeed it must be invariant

for any cycle of p letters, and it is possible to deduce from this that it is invariant for

any cycle of 3 letters and from this by any even substitution. Thus, as Ruffini had

proved, a rational function of 5 variable cannot take 3 or 4 values. Abel then gives,

following Cauchy, the form of a function v of 5 letters x1, x2, . . . , x5 which takes 2
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values: it may be written p + qρ, where p and q are rational symmetric functions

and

ρ = (x1 − x2)(x1 − x3) . . . (x4 − x5)

is the square root of the discriminant. Indeed if v1 and v2 are the two values of v,

v1 +v2 = t and (v1v2)ρ = t1 are symmetric and v1 = 1
2
t + t1

2ρ2 ρ. Finally, Abel gives

the form of a function of 5 quantities which takes 5 values: it is r0 + r1x + r2x2 +
r3x3 + r4x4, where r0, r1, r2, r3 and r4 are symmetric functions of the five quantities

and x is one of them. Indeed this is true for a rational function of x1, x2, x3, x4, x5

which is symmetric with respect to x2, x3, x4, x5. Now if v is a function which takes

5 values v1, v2, v3, v4, v5 under the substitutions of x1, x2, x3, x4, x5, the number µ

of values of xm
1 v under the substitutions of x2, x3, x4, x5 is less than 5, otherwise it

would give 25 values under the substitutions of x1, x2, x3, x4, x5 and 25 does not

divide 5!. If µ = 1, v is symmetric with respect to x2, x3, x4, x5 and the result is

true; it is also true if µ = 4 for the sum v1 + v2 + v3 + v4 + v5 is completely

symmetric and v1 + v2 + v3 + v4 is symmetric with respect to x2, x3, x4, x5, so

v5 = v1 + v2 + v3 + v4 + v5 − (v1 + v2 + v3 + v4) is of the desired form. It is

somewhat more work to prove that µ cannot be 2 or 3. Eliminating x between the

equations

(x − x1)(x − x2)(x − x3)(x − x4)(x − x5) = x5 − ax4 + bx3 − cx2 + dx − e = 0

and r0 + r1x + r2x2 + r3x3 + r4x4 = v (a quantity taking 5 values), one obtains

x = s0 + s1v + s2v
2 + s3v

3 + s4v
4

where s0, s1, s2, s3 and s4 are symmetric functions. The paragraph ends with the

following lemma: if a rational function v of the 5 roots takes m values under the

substitutions of these roots, it is a root of an equation of degree m with coeffficients

rational symmetric and it cannot be a root of such an equation of degree less than m.

The fourth paragraph finally gives the proof of the impossibility of a solution by

radicals. As in the preceding paper, Abel proves that an innermost radical R
1
m = v

in a hypothetical solution has an index m (supposed prime) equal to 2 or 5; if m = 5,

one may write

x = s0 + s1 R
1
5 + s2 R

2
5 + s3 R

3
5 + s4 R

4
5

and s1 R
1
5 =

1

5
(x1 + α4x2 + α3x3 + α2x4 + αx5)

where α is a fifth root of 1, and the second member takes 120 values, which is

impossible for it is a root of the equation z5 − s5
1 R = 0. So m = 2 and

√
R = p +qs

with p, q symmetric and s = (x1 − x2) · · · (x4 − x5); the second value is −
√

R =

p − qs, so p = 0. Then, at the second order appear radicals
5

√

α + β
√

s2 = R
1
5 with

α, β symmetric as well as γ = 5
√

α2 − β2s2; p = 5
√

R + γ
5√

R
takes 5 values so that
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x = s0 + s1 p + s2 p2 + s3 p3 + s4 p4 = t0 + t1 R
1
5 + t2 R

2
5 + t3 R

3
5 + t4 R

4
5

with t0, t1, t2, t3 and t4 rational in a, b, c, d, e and R. From this relation, one deduces

t1 R
1
5 =

1

5
(x1 + α4x2 + α3x3 + α2x4 + αx5) = p′,

where α is a fifth root of 1; p′5 = t5
1 R = u + u′√s2 and (p′5 − u)2 = u′2s2, an

equation of degree 10 in p′, whereas p′ takes 120 values, a contradiction.

Abel reproduced this demonstration in the Bulletin de Férussac (1826, t. 6,

Œuvres, t. I, p. 8794).

In a short paper published in the Annales de Gergonne (1827, t. XVII, Œuvres,

t. I, p. 212–218), Abel treated a problem of the theory of elimination: given two

algebraic equations

ϕy = p0 + p1 y + p2 y2 + . . . + pm−1 ym−1 + ym = 0

and ψy = q0 + q1 y + q2 y2 + . . . + qn−1 yn−1 + yn

with exactly one common solution y, compute any rational function fy of this

solution rationally as a function of p0, p1, . . . , pm−1, q0, q1, . . . , qn−1. He denotes

the roots of ψ by y, y1, . . . , yn−1 and the product of the ϕy j with j �= k by Rk

(y0 = y). As ϕy = 0, Rk = 0 for k � 1 so that fy =
∑

fyk ·θyk ·Rk
∑

θyk ·Rk
, where θ is any

rational function. If fy = Fy

χy
, with F and χ polynomial, one may take θ = χ to get

fy =
∑

Fyk ·Rk
∑

χyk ·Rk
.

Abel proposes a better solution, based on the observation that R, being

a symmetric function of y1, y2, . . . , yn−1, may be expressed as R = ρ0 +
ρ1 y + ρ2 y2 + . . . + ρn−1 yn−1, with coefficients ρ0, ρ1, ρ2, . . . , ρn−1 polyno-

mial in p0, p1, . . . , pm−1, q0, q1, . . . , qn−1, and the same is true for Fy · R =
t0 + t1 y + t2 y2 + . . .+ tn−1 yn−1. Naturally, Rk = ρ0 +ρ1 yk +ρ2 y2

k + . . .+ρn−1 yn−1
k

and Fyk · Rk = t0 + t1 yk + t2 y2
k + . . . + tn−1 yn−1

k . Now taking θy = 1
ψ′ y , we have

∑ Rk

ψ ′yk

= ρ0

∑ 1

ψ ′yk

+ ρ1

∑ yk

ψ ′yk

+ ρ2

∑ y2
k

ψ ′yk

+ . . . + ρn−1

∑ yn−1
k

ψ ′yk

= ρn−1

and, in the same way,
∑ Rk ·Fyk

ψ′yk
= tn−1, so that Fy = tn−1

ρn−1
. For a rational function Fy

F′y

(where F ′ is not the derivative of F!), the value is
tn−1

t′
n−1

, where t ′n−1 is the coefficient

of yn−1 in F ′y · R. In the case of fy = y, let R = ρyn−1 + ρ′yn−2 + . . . ; then

Ry = ρyn + ρ′yn−1 + . . . = (ρ′ − ρqn−1)yn−1 + . . .

so that y = −qn−1 + ρ′

ρ
.

In his researches about elliptic functions, published in the second and the third

volume of Crelle’s Journal (1827–28, Œuvres, t. I, p. 294–314 and 355–362) Abel
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met some new cases of algebraic equations solvable by radicals. Such equations

were known from the time of A. de Moivre (1707), who showed that the equation

of degree n (odd integer) giving sin a
n

is solvable by radicals, when sin a is known,

the formula involving sin 2π
n

in its coefficients. Then Gauss (1801) proved that the

cyclotomic equation of degree n − 1 (n a prime number) giving the n-th root e
2πi
n is

also solvable.

Abel developed an analogous theory for elliptic functions instead of circular

functions. Let x = ϕu be defined by u =
x
∫

0

dt√
(1−c2t2)(1+e2t2)

(e, c given real param-

eters); then ϕ is a uniform meromorphic function in the complex domain, with two

independent periods

2ω = 4

1/c
∫

0

dx
√

(1 − c2x2)(1 + e2x2)
,

2i̟ = 4i

1/e
∫

0

dx
√

(1 − e2x2)(1 + c2x2)
.

Abel discovered that the equation of degree n2 giving ϕ
(

a
n

)

when ϕ(a) is known

is solvable by radicals, the formula involving ϕ
(

Ω
n

)

,Ω being a period, in its coef-

ficients. The equation of degree n2−1
2

giving the non-zero values of ϕ2
(

Ω
n

)

may be

decomposed in n + 1 equations of degree n−1
2

, all solvable, by means of an equation

of degree n + 1, which, in general, is not solvable by radicals. For certain singular

moduli e
c
, for instance when e

c
= 1,

√
3 or 2 ±

√
3, the equation of degree n + 1 is

also solvable; Gauss already knew this lemniscatic case, where c = e = 1.

The base for these results is Euler’s theorem of addition for elliptic inte-

grals, which gives, in Abel’s notation ϕ(α + β) = ϕα fβFβ+ϕβ fαFα

1+e2c2ϕ2αϕ2β
, where fα =

√

1 − c2ϕ2α, Fα =
√

1 + e2ϕ2α. So the roots of the equation for ϕ
(

α
n

)

are

ϕ
(

(−1)m+µ α
n

+ mω+µ̟i

n

)

, |m|, |µ| ≤ n−1
2

and they are rational functions of

ϕ(β), fβ, Fβ, where β = α
n

. Abel defines

ϕ1β =
∑

|m|≤ n−1
2

ϕ

(

β +
2mω

n

)

, ψβ =
∑

|µ|≤ n−1
2

θµϕ1

(

β +
2µ̟i

n

)

and ψ1β =
∑

|µ|≤ n−1
2

θµϕ1

(

β −
2µ̟i

n

)

,

where θ is an n-th root of 1; he proves, by means of the addition theorem, that ψβ·ψ1β

and (ψβ)n+(ψ1β)n are rational functions of ϕα, so that ψβ = n
√

A +
√

A2 − Bn with

A and B rational in ϕα. Indeed, ϕ1β = ϕβ+
n−1

2
∑

m=1

(

ϕ
(

β + 2mω
n

)

+ ϕ
(

β − 2mω
n

))

is ra-
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tional with respect to ϕβ = x and ϕ1

(

β ± 2µ̟i

n

)

= Rµ±R′
µ

√

(1 − c2x2)(1 + e2x2),

where Rµ and R′
µ are rational in x, so that ψβ and ψ1β have the same form and ψ1β

is deduced from ψβ by changing the sign of the radical
√

(1 − c2x2)(1 + e2x2). Now

ϕ1

(

β + 2kω
n

)

= ϕ1β,ψ
(

β + 2k′̟i
n

+ 2kω
n

)

= θ−k′
ψβ and ψ1

(

β + 2k′̟i
n

+ 2kω
n

)

=
θk′

ψ1β so that ψβ · ψ1β and (ψβ)n+(ψ1β)n , which are rational in ϕβ, take the same

value when ϕβ is replaced by any other root of the considered equation and are

therefore rational in ϕα. The n − 1 different values of θ give n − 1 values A j and B j

for A and B and one has

ϕ1

(

β +
2k̟i

n

)

= ϕα +
1

n

∑

j

θ−k
j

n

√

A j +
√

A2
j − Bn

j . (36)

Then Abel uses ψ2β =
∑

|m|≤ n−1
2

θmϕ1

(

β + 2mω
n

)

, ψ3β =
∑

|m|≤ n−1
2

θmϕ1

(

β − 2mω
n

)

,

such that ψ2β · ψ3β and (ψ2β)n + (ψ3β)n are rational functions of ϕ1β. He gets

ψ2β = n
√

C +
√

C2 − Dn with C, D rational in ϕ1β and

ϕβ =
1

n



ϕ1β +
∑

j

n

√

C j +
√

C2
j − Dn

j



 . (37)

The radicals in (36) and (37) are not independent (otherwise each formula should

give nn−1 different values). Indeed, if ψkβ =
∑

|µ|≤ n−1
2

θkµϕ1

(

β + 2µ̟i

n

)

, ψk
1β =

∑

|µ|≤ n−1
2

θkµϕ1

(

β − 2µ̟i

n

)

, where θ = cos 2π
n

+ i sin 2π
n

, ψk
(

β + 2ν̟i
n

)

= θ−kνψkβ

and ψk
1

(

β + 2ν̟i
n

)

= θkνψk
1β so that ψkβ

(ψ1β)k + ψk
1β

(ψ1
1β)k

and ψkβ

(ψ1β)k−n + ψk
1β

(ψ1
1β)k−n

are

rational functions of ϕα. As

(ψ1β)n = A1 +
√

A2
1 − Bn

1 and (ψ1
1β)n = A1 −

√

A2
1 − Bn

1 ,

it is easy to deduce ψkβ = (ψ1β)k · (Fk + Hk

√

A2
1 − Bn

1 ), with Fk and Hk rational

in ϕα, that is
n

√

Ak +
√

A2
k − Bn

k = (A1 +
√

A2
1 − Bn

1 )
k
n (Fk + Hk

√

A2
1 − Bn

1 ). In the

same way,
n

√

Ck +
√

C2
k − Dn

k = (C1 +
√

C2
1 − Dn

1)
k
n (Kk + Lk

√

A2
1 − Bn

1 ), with Kk

and Lk rational in ϕα.

For the other problem (division of the periods by an odd prime n), the roots are

ϕ2

(

mω ± µ̟i

n

)

, 0 ≤ m, µ ≤
n − 1

2
, (m, µ) �= (0, 0);

Abel groups them according to the points m:µ of the projective line P1(Fn), which

gives n +1 groups of n−1
2

roots each: ν(1, 0), ν(m, 1), 1 ≤ ν ≤ n−1
2

, 0 ≤ m ≤ n −1.
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He puts rν = ϕ2
(

νω
n

)

, rν,m = ϕ2
(

ν mω+̟i
n

)

. If p = ψ
(

ϕ2
(

ω′
n

))

is any rational

symmetric function of the ϕ2
(

kω′
n

)

, 1 ≤ k ≤ n−1
2

, ω′ = mω+µ̟i, then ψrν = ψr1

and ψrν,m = ψr1,m . Consider now the equation of degre n + 1 of which the roots

are ψr1 and ψr1,m (0 ≤ m ≤ n − 1). The sum of the k-th powers of these roots is
2

n−1
times the sum of the (ψrν)

k and of the (ψrν,m)k, so it is rational with respect to

e and c, and the same is true for the coefficients of the considered equation of degree

n + 1. We thus see that the equations of degree n−1
2

respectively giving the rν and

the rν,m for m fixed have coefficients given by an equation of degree n + 1. In fact

one such auxiliary equation of degree n +1 is sufficient, for when a function such as

p = ψr1 is given, any other such function q = θr1 is a rational function of p. Abel

proves this by a method due to Lagrange, determining θr1 and the θr1,m as solutions

of the linear system

(ψr1)
kθr1 + (ψr1,0)

kθr1,0 + (ψr1,1)
kθr1,1 + . . . + (ψr1,n−1)

kθr1,n−1 = sk

where the sk are easily seen to be symmetric with respect to r1, r2, . . . , r1,0, . . . and

so rational functions of e and c.

In order to solve the n + 1 equations of degree n−1
2

, with roots ϕ2
(

kω′
n

)

, Abel

procedes as Gauss did for the cyclotomy: putting ε = ω′
n

and α a primitive root

modulo n, the roots may then be written ϕ2(αℓε), 0 ≤ ℓ ≤ n−3
2

and the Lagrange

resolvant is

ψ(ε) = ϕ2(ε) + ϕ2(αε)θ + . . . + ϕ2
(

α
n−3

2 ε
)

θ
n−3

2 ,

where θ is a n−1
2

-th root of 1. It is a rational function of ϕ2(ε) and its n−1
2

-th power v

is symmetric with respect to the n−1
2

roots. Thus v is known when the equation of

degree n + 1 is solved. Varying θ, we get n−1
2

values vk for v and

ϕ2(ε) =
2

n − 1

(

−p n−3
2

+ n−1
2
√

v1 + . . . + n−1
2

√

v n−3
2

)

,

where −p n−3
2

= ϕ2(ε) + ϕ2(αε) + . . . + ϕ2
(

α
n−3

2 ε
)

corresponds to θ = 1 and

is symmetric. The n − 1 radicals are not independent: sk =
n−1

2
√

vk
(

n−1
2
√

v1

)k is a rational

function of ϕ2(ε) which remains invariant when ε is replaced by αmε, so it is a rational

function of the root of the auxiliary equation of degree n + 1.

When e = c = 1, ω = ̟ and there exists a complex multiplication, that is

a formula

ϕ(m + µi)δ = ϕδ · T,

for m, µ integers and m + µ odd, with T a rational function if ϕ4(δ). This permits

the solution by radicals of the equation giving ϕ
(

ω
n

)

whenever n is a prime number
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of the form 4ν+1. Indeed, consider n = α2 +β2, where α and β are relatively prime

integers such that α+β is odd, and there exists integers m, t such that 1 = 2mα−nt;

then mω
α+βi

+ mω
α−βi

= 2mα
n

and

ϕ

(

2mα

n

)

= ϕ
(ω

n
+ tω

)

= (−1)tϕ
(ω

n

)

,

so it is sufficient to consider the equation for ϕ
(

ω
α+βi

)

= ϕδ. This equation is

equivalent to ϕ(α + βi)δ = 0 and its roots are x = ϕ
(

m+µi

α+βi
ω
)

, m, µ integers; it is

easy to reduce these roots to the form x = ϕ
(

ρω

α+βi

)

, |ρ| ≤ n−1
2

= 2ν and to see that,

in this form, they are all distinct. Moreover, the equation has no multiple roots, and

finally, since ϕ is an odd function, we have to consider an equation of degree 2ν, with

roots ϕ2(δ), ϕ2(2δ), . . . , ϕ2(2νδ) or ϕ2(δ), ϕ2(εδ), ϕ2(ε2δ), . . . , ϕ2(ε2ν−1δ), where

ε is a primitve root modulo n. Then, as for the preceding problem, one sees that

ϕ2(εmδ) = 1
2ν

(

A + θ−mv
1

2ν + s2θ
−2mv

2
2ν + s2ν−1θ

−(2ν−1)mv
2ν−1

2ν

)

, where

v = (ϕ2(δ) + θϕ2(εδ) + θ2ϕ2(ε2δ) + . . . + θ2ν−1ϕ2(ε2ν−1δ))2ν,

sk =
ϕ2(δ) + θkϕ2(εδ) + θ2kϕ2(ε2δ) + . . . + θ(2ν−1)kϕ2(ε2ν−1δ)

(ϕ2(δ) + θϕ2(εδ) + θ2ϕ2(ε2δ) + . . . + θ2ν−1ϕ2(ε2ν−1δ))k
,

A = ϕ2(δ) + ϕ2(εδ) + ϕ2(ε2δ) + . . . + ϕ2(ε2ν−1δ)

are rational with respect to the coefficients of the equation, so of the form a + bi

with a and b rational numbers. Abel oberves that, when n is a Fermat prime number

2N +1, all the radicals in the solution are of index 2 for 2ν = 2N−1 and θ2N−1 = 1. He

applies these results to the division of the lemniscate of polar equation x =
√

cos 2θ

(x distance to the origin, θ polar angle), for which the elementary arc is dx√
1−x4

.

All these examples of solvable equations (Moivre, Gauss, elliptic functions) gave

Abel models for a general class of solvable equations; following Kronecker, we call

them Abelian equations and they are the object of a memoir published in the fourth

volume of Crelle’s Journal (1829, Œuvres, t. I, p. 478–507). To begin with, Abel

defines (in a footnote) the notion of an irreducible equation with coefficients rational

functions of some quantities a, b, c, . . . considered as known; his first theorem states

that if a root of an irreducible equation ϕx = 0 annihilates a rational function fx of

x and the same quantities a, b, c, . . . , then the it is still true for any other root of

ϕx = 0 (the proof is given in a footnote).

The second theorem states that if an irreducible equation ϕx = 0 of degree µ has

two roots x′ and x1 related by a rational relation x′ = θx1 with known coefficients,

then the given equation may be decomposed in m equations of degree n of which

the coefficients are rational functions of a root of an auxiliary equation of degree

m (naturally µ = mn). First of all, the equation ϕ(θx1) = 0 with the theorem I

shows that ϕ(θx) = 0 for any root x of ϕx = 0; so θx′ = θ2x1, θ
3x1, . . . are all

roots of ϕx = 0. If θm x1 = θm+n x1 (the equation has only a finite number of
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roots), or θn(θm x1) − θm x1 = 0, we have θn x − x = 0 for any root of ϕx = 0

by the theorem I and, in particular θn x1 = x1; if n is minimal with this property,

x1, θx, . . . , θn−1x1 are distinct roots and the sequence (θm x1) is periodic with period

n. When µ > n, there exists a root x2 which does not belong to this sequence; then

(θm x2) is a new sequence of roots with exactly the same period for θn x2 = x2 and

if θkx2 = x2 for a k < n, we should have θkx1 = x1. When µ > 2n, there exists

a root x3 different from the θm x1 and the θm x2, and the sequence (θm x3) has a period

n. Continuing in this way, we see that µ is necessarily a multiple mn of n and

that the µ roots may be grouped in m sequences (θkx j)0≤k≤n−1 ( j = 1, 2, . . . , m).

Note that this proof is analogous to that of Lagrange establishing that a rational

function of n letters takes, under the substitutions of these letters, a number of values

which divides n!. In order to prove his second theorem, Abel considers a rational

symmetric function y1 = f(x1, θx1, . . . , θn−1x1) = Fx1 of the first n roots and the

corresponding y j = Fx j = F(θkx j) (2 ≤ j ≤ m); for any natural integer ν, the

sum yν
1 + yν

2 + . . . + yν
m is symmetric with respect to the mn roots of ϕx = 0, so

it is a known quantity and the same is true for the coefficients of the equation with

the roots y1, y2, . . . , ym . Since the equation with the roots x1, θx1, . . . , θn−1x1 has

its coefficients rational symmetric functions of x1, θx1, . . . , θn−1x1, each of these

coefficients is a root of an equation of degree m with known coefficients. In fact

one auxiliary equation of degree m is sufficient: this is proved by the stratagem of

Lagrange already used by Abel for the division of the periods of elliptic functions

(Abel notes that it is necessary to choose the auxiliary equation without multiple

roots, which is always possible).

When m = 1, µ = n; the roots constitute only one sequence x1, θx1, . . . , θµ−1x1

and the equation ϕx = 0 is algebraically solvable as Abel states it in his theorem III.

We now say that the equation ϕx = 0 is cyclic. This result comes from the fact that

the Lagrange resolvant

x + αθx + α2θ2x + . . . + αµ−1θµ−1x

(x any root of the equation, α µ-th root of 1) has a µ-th power v symmetric with

respect to the µ roots. We now get x = 1
µ
(−A + µ

√
v1 + µ

√
v2 + . . . + µ

√
vµ−1),

where v0, v1, . . . , vµ−1 are the values of v corresponding to the diverse µ-th roots

α of 1 (α = 1 for v0) and −A = µ
√

v0. The µ − 1 radicals are not independent for if

α = cos 2π
µ

+
√

−1 sin 2π
µ

and if

µ
√

vk = x + αkθx + α2kθ2x + . . . + α(m−1)kθµ−1x,

the quantity µ
√

vk( µ
√

v1)
µ−k = ak is a symmetric function of the roots of ϕx = 0,

so it is known. Abel recalls that this method was used by Gauss in order to solve

the equations of the cyclotomy. The theorem IV is a corollary of the preceding one:

when the degree µ is a prime number and two roots of ϕx = 0 are such that one of

them is a rational function of the other, then the equation is algebraically solvable.

As aµ−1 = µ
√

vµ−1 · µ
√

v1 = a, does not change when α is replaced by its complex

conjugate, it is real when the known quantities are supposed to be real. Thus v1 and

vµ−1 are complex conjugate and
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v1 = c +
√

−1
√

aµ − c2 = (
√

ρ)µ(cos δ +
√

−1 · sin δ),

and so

µ
√

v1 =
√

ρ ·
(

cos
δ + 2mπ

µ
+

√
−1 · sin

δ + 2mπ

µ

)

.

So in order to solve ϕx = 0 it suffices to divide the circle in µ equal parts, to divide

the angle δ (which is constructible) in µ equal parts and to extract the square root of

ρ. Moreover, Abel notes that the roots of ϕx = 0 are all real or all imaginary; if µ

is odd they are all real.

The theorem VI is relative to a cyclic equation ϕx = 0 of composite degree µ =
m1 · m2 · · · mω = m1 · p1. Abel groups the roots in m1 sequences (θkm1+ j x)0≤k≤p1−1

(0 ≤ j ≤ m1 −1) of p1 roots each. This allows the decomposition of the equation in

m1 equations of degree p1 with coefficients rational functions of a root of an auxiliary

equation of degree m1. In the same way, each equation of degree p1 = m2 · p2 is

decomposed in m2 equations of degree p2 using an auxiliary equation of degree m2,

etc. Finally, the solution of ϕx = 0 is reduced to that of ω equations of respective

degrees m1, m2, . . . , mω. As Abel notes, this is precisely what Gauss did for the

cyclotomy. The case in which m1, m2, . . . , mω are relatively prime by pairs is

particularly interesting. Here for 1 ≤ k ≤ ω an auxiliary equation fyk = 0 of degree

mk allows to decompose ϕx = 0 in mk equations Fk(θ
j x, yk) = 0 of degree nk = µ

mk

(0 ≤ j ≤ mk −1). Since x is the only common root of the ω equations Fk(x, yk) = 0

(for θkm p x = θℓmq x with k ≤ n p − 1 and ℓ ≤ nq − 1 implies km p = ℓmq and then

k = ℓ = 0 if p �= q), it is rational with respect to y1, y2, . . . , yω. So, in this case, the

resolution is reduced to that of the equations f1 y1 = 0, f2 y2 = 0, . . . , fωyω = 0

of respective degrees m1, m2, . . . , mω and with coefficients known quantities. One

may take for the mk the prime-powers which compose µ.

All the auxiliary equations are cyclic as is ϕx = 0, so they may be solved by the

same method. This follows from the fact that if

y = Fx = f(x, θm x, θ2m x, . . . , θ(n−1)m x)

is symmetric with respect to x, θm x, θ2m x, . . . , θ(n−1)m x, so is F(θx). Then, by

Lagrange’s stratagem F(θx) is a rational function λy of y.

Abel ends this part of the memoir with the theorem VII, relating to a cyclic

equation of degree 2ω: its solution amounts to the extraction of ω square roots. This

is the case for Gauss’ division of the circle by a Fermat prime.

The second part deals with algebraic equations of which all the roots are rational

functions of one of them, say x. According to Abel’s theorem VIII, if ϕx = 0 is

such an equation of degree µ and if, for any two roots θx and θ1x the relation

θθ1x = θ1θx = 0 is true, then the equation is algebraically solvable. Abel begins

by observing that one may suppose that ϕx = 0 is irreducible. So that if n is the

period of (θkx), the roots are grouped in m = µ

n
groups of n roots. Each group

contains the roots of an equation of degree n with coefficients rational functions

of a quantity y = f(x, θx, θ2x, . . . , θn−1x) given by an equation of degree m



The Work of Niels Henrik Abel 61

with known coefficients, which is easily seen to be irreducible. The other roots

of the equation in y are of the form y1 = f(θ1x, θθ1x, θ2θ1x, . . . , θn−1θ1x) =
f(θ1x, θ1θx, θ1θ

2x, . . . , θ1θ
n−1x) (by the hypothesis), so rational symmetric with

respect to x, θx, θ2x, . . . , θn−1x and (again by Lagrange’s stratagem) rational in y:

y1 = λy. Now if y2 = λ1 y = f(θ2x, θθ2x, θ2θ2x, . . . , θn−1θ2x),

λλ1 y = λy2 = f(θ1θ2x, θθ1θ2x, . . . , θn−1θ1θ2x)

= f(θ2θ1x, θθ2θ1x, . . . , θn−1θ2θ1x) = λ1λy

so that the equation in y has the same property as the initial equation ϕx = 0 and it

is possible to deal with it in the same manner. Finally ϕx = 0 is solvable through

a certain number of cyclic equations of degrees n, n1, n2, . . . , nω such that µ =

nn1n2 · · · nω, this is Abel’s theorem IX. In the theorem X, Abel states that when

µ = ε
ν1
1 ε

ν2
2 . . . ενα

α with ε1, ε2, . . . , εα prime, the solution amounts to that of ν1

equations of degree ε1, ν2 equations of degree ε2, . . . , να equations of degree εα, all

solvable by radicals.

As an example, Abel applies his general theorem to the division of the circle

in µ = 2n + 1 equal parts, where µ is a prime number; the equation with roots

cos 2π
µ

, cos 4π
µ

, . . . , cos 2nπ
µ

has rational coefficients and it is cyclic. If m is a prim-

itive root modulo µ, the roots are x, θx, . . . , θn−1x where x = cos 2π
µ

= cos a and

θx = cos ma, polynomial of degree m. As Gauss has proved, the division of the

circle is reduced in µ parts is reduced to the division of the circle in n parts, the

division of a certain (constructible) angle in n parts and the extraction of a square

root of a quantity

ρ = |(x + αθx + α2θ2x + . . . + αn−1θn−1x)

× (x + αn−1θx + αn−2θ2x + . . . + αθn−1x)|.

It is not difficult to compute ±ρ = 1
2
n − 1

4
− 1

2
(α+α2 + . . .+αn−1) = 1

2
n + 1

4
so the

square root is
√

µ conformally to Gauss’ result. After his notebooks, we know that

Abel also wanted to apply his theory to the division of periods of elliptic functions

with a singular modulus, precisely in the case where ω = ̟
√

2n + 1.

On the 8 of October 1828, Abel sent the statement of three theorems on algebraic

equations to Crelle.

A. Given a prime number n and n unknown quantities x1, x2, . . . , xn related by

the relations ϕ(x1, x2, . . . , xn)=ϕ(x2, x3, . . . , x1)= . . .=ϕ(xn, x1, . . . , xn−1)=0,

where ϕ is a polynomial of degree m, the equation of degree mn − m obtained

by elimination of n − 1 of the quantities and division by the factor ϕ(x, x, . . . , x)

is decomposable in mn−m
n

equations of degree n, all algebraically solvable, with

the help of an equation of degree mn−m
n

. Abel gives, as examples, the cases where

n = 2, m = 3 and n = 3, m = 2; in these cases mn − m = 6 and the equation of

degree 6 is algebraically solvable.

B. If three roots of an irreducible equation of prime degree are so related that one

of them is rationally expressed by the other two, then the equation is algebraically

solvable.
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This theorem is given, as a necessary and sufficient condition, by E. Galois as

an application of his Mémoire sur les conditions de résolubilité des équations par

radicaux (1831) and it was at first interpreted as the main result of this memoir.

C. If two roots of an irreducible equation of prime degree are so related that

one of them is rationally expressed by the other, then the equation is algebraically

solvable.

This statement is the same as that of the theorem IV in the 1829 memoir (which

was composed in March 1828).

Abel left uncompleted an important paper Sur la théorie algébrique des équations

(Œuvres, t. II, p. 217–243). In the introduction, he explains in a very lucid way his

method in mathematics, saying that one must give a problem such a form that it

is always possible to solve it. For the case of the solution by radicals of algebraic

equations, Abel formulates certain problems:

(1) To find all the equations of a given degree which are algebraically solvable.

(2) To judge whether a given equation is algebraically solvable.

(3) To find all the equations that a given algebraic function may satisfy.

Here an algebraic function is defined, as in the 1826 paper, as built by the

operations of addition, subtraction, multiplication, division and extraction of roots

of prime index. There are two types of equations to consider: those for which the

coefficients are rational functions of certain variables x, z, z′, z′′, . . . (with arbitrary

numerical coefficients; for instance the general equation of a given degree, for which

the coefficients are independent variables) and those for which the coefficients are

constant; in the last case the coefficients are supposed to be rational expressions in

given numerical quantities α, β, γ, . . . with rational coefficients. An equation of the

first type is said to be algebraically satisfied (resp. algebraically solvable) when it

is verified when the unknown is replaced by an algebraic function of x, z, z′, z′′, . . .
(resp. when all the roots are algebraic functions of x, z, z′, z′′, . . . ); there are anal-

ogous definitions for the second type, with “algebraic function of x, z, z′, z′′, . . . ”

replaced by “algebraic expression of α, β, γ, . . . ”.

In order to attack his three problems, Abel is led to solve the following ones “To

find the most general form of an algebraic expression” and “To find all the possible

equations which an algebraic function may satisfy”. These equations are infinite in

number but, for a given algebraic function, there is one of minimal degree, and this

one is irreducible.

Abel states some general results he has obtained about these problems:

(1) If an irreducible equation may be algebraically satisfied, it is algebraically

solvable; the same expression represents all the roots, by giving the radicals in

it all their values.

(2) If an algebraic expression satisfies an equation, it is possible to give it such

a form that it still satisfies the equation when one gives to the radicals in it all

their values.

(3) The degree of an irreducible algebraically solvable equation is the product of

certain indexes of the radicals in the expression of the roots.
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About the problem “To find the most general algebraic expression which may

staisfy an equation of given degree”, Abel states the following results:

(1) If an irreducible equation of prime degree µ is algebraically solvable, its roots

are of the form y = A + µ
√

R1 + µ
√

R2 + . . . + µ
√

Rµ−1, where A is rational and

R1, R2, . . . , Rµ−1 are roots of an equation of degree µ − 1.

This form was conjectured by Euler (1738) for the general equation of degree

µ.

(2) If an irreducible equation of degree µα, with µ prime, is algebraically solvable,

either it may be decomposed in µα−β equations of degree µβ of which the

coefficients depend on an equation of degree µα−β, or each root has the form

y = A + µ
√

R1 + µ
√

R2 + . . . + µ
√

Rν, with A rational and R1, R2, . . . , Rν roots

of an equation of degree ν ≤ µα − 1.

(3) If an irreducible equation of degree µ not a prime-power is algebraically solv-

able, it is possible to decompose µ in a product of two factors µ1 and µ2 and

the equation in µ1 equations of degree µ2 of which the coefficients depend on

equations of degree µ1.

(4) If an irreducible equation of degree µα, with µ prime, is algebraically solvable,

its roots may be expressed by the formula y = f( µ
√

R1,
µ
√

R2, . . . , µ
√

Rα) with

f rational symmetric and R1, R2, . . . , Rα roots of an equation of degree ≤
µα − 1.

A corollary of (3) is that when an irreducible equation of degree µ =
µ

α1
1 µ

α2
2 . . . µαω

ω (µ1, µ2, . . . , µω prime) is algebraically solvable, only the radicals

necessary to express the roots of equations of degrees µ
α1
1 , µ

α2
2 , . . . , µαω

ω appears in

the expression of the roots. Abel adds that if an irreducible equation is algebraically

solvable, its roots may be found by Lagrange’s method. According to this method,

an equation of degree µ is reduced to the solution of (µ−1)!
ϕ(µ)

equations of degree ϕ(µ)

(ϕ the Euler function) with the help of an equation of degree (µ−1)!
ϕ(µ)

(Abel text leaves

a blank at the place of these numbers). Abel announces that a necessary condition

for the algebraic solvability is that the equation of degree (µ−1)!
ϕ(µ)

have a root rational

with respect to the coefficients of the proposed equation; if µ is a prime number, this

condition is also sufficient.

The first paragraph of the paper explains the structure of algebraic expressions,

as was done in the published 1826 article; this time, the order of such an expression

is defined as the minimum number of radicals necessary to write it. In the second

paragraph, a polynomial

yn + Ayn−1 + A′yn−2 + . . . = ϕ(y, m)

is said to be of order m when the maximum order of its coefficients A, A′, . . . is m.

The first theorem states that an expression t0+t1 y
1

µ1
1 +t2 y

2
µ1
1 +. . .+tµ1−1 y

µ1−1
µ1

1 , with

t0, t1, . . . , tµ1−1 rational with respect to a µ1-th root ω of 1 and radicals different

from y
1

µ1
1 , is 0 only if t0 = t1 = . . . = tµ1−1 = 0. The second theorem states

that if an equation ϕ(y, m) = 0 of order m is satisfied by an algebraic expression
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y = p0 + p1
µ1
√

y1 + . . . of order n > m, it is still satisfied by the expression with

ω µ1
√

y1, ω
2 µ1

√
y1, . . . instead of µ1

√
y1, where ω is a µ1-th root of 1. After the third

theorem when two equations ϕ(y, m) = 0 and ϕ1(y, n) = 0 have a common root, the

first one being irreducible and n ≤ m, then ϕ1(y, n) = f(y, m) · ϕ(y, m). Then the

fourth theorem says that ϕ1(y, n) is divisible by the product
∏

ϕ(y, m) of ϕ(y, m)

and the polynomial ϕ′(y, m), ϕ′′(y, m), . . . , ϕ(µ−1)(y, m) obtained by successively

replacing in ϕ(y, m) the outermost radical µ
√

y1 by ω µ
√

y1, ω
2 µ
√

y1, . . . (ω µ-th

root of 1); this comes from the fact that ϕ′(y, m), ϕ′′(y, m), . . . , ϕ(µ−1)(y, m) are

relatively prime by pairs. In the fifth theorem, Abel states that if ϕ(y, m) = 0 is

irreducible, so is
∏

ϕ(y, m) = ϕ1(y, m′) = 0.

Now if am = f

(

y
1

µm
m , y

1
µm−1

m−1 , . . .

)

, of order m, is a root of an irreducible

equation ψ(y) = 0, ψ must be divisible by y − am , and so also by
∏

(y − am) =
ϕ(y, m1) (theorem IV), which is irreducible (theorem V). It now follows that ψ is

divisible by
∏

ϕ(y, m1) = ϕ1(y, m2) and by
∏

ϕ1(y, m2) = ϕ2(y, m3), etc., with

m > m1 > m2 > . . . Finally, we arrive at some mν+1 = 0 and ϕν(y, 0) divides

ψ(y) and has rational coefficients, so that ψ = ϕν. This leads to the degree of ψ,

for that of ϕ(y, m1) is µm , that of ϕ1(y, m2) is µm · µm1
, . . . and that of ϕν is

µm · µm1
. . . µmν = µ. This is the third general result of the introduction, with the

further explanation that the index of the outermost radical is always one of the factors

of the degree µ. The first general result of the introduction is also a consequence of

that fact, as the fact that an algebraic expression solution of an irreducible equation

of degree µ takes exactly µ values.

In the third paragraph, Abel first deals with the case in which µ is a prime

number; then µm = µ and am = p0 + p1s
1
µ + p2s

2
µ + . . .+ pµ−1s

µ−1
µ , with s = ym ;

giving to the radical s
1
µ its µ values s

1
µ , ωs

1
µ , . . . , ωµ−1s

1
µ , where ω is a µ-th root

of 1, we get µ values z1, z2, . . . , zµ for am and, as the given equation has only µ

roots, we cannot get new values by replacing the p j or s by other values p′
j and s′

obtained by changing the value of the radicals they contain. Now if

p′
0 + p′

1ω
′s′ 1

µ + . . . + p′
µ−1ω

′µ−1
s′ µ−1

µ = p0 + p1ωs
1
µ + . . . + pµ−1ω

µ−1s
µ−1
µ ,

we see that different values ω0, ω1, . . . , ωµ−1 of the root ω correspond to different

values of the root ω′ of 1. Writing the corresponding equalities and adding, we obtain

µp′
0 = µp0, so p′

0 = p0 and then

µp′
1s′ 1

µ = p1s
1
µ (ω0 + ω1ω

−1 + ω2ω
−2 + . . . + ωµ−1ω

−µ+1) + . . .

So

s′ 1
µ = f

(

ω, p0, p′
0, p1, p′

1, . . . , s′, s
1
µ

)

= q0 + q1s
1
µ + q2s

2
µ + . . . + qµ−1s

µ−1
µ

and s′ = t0 + t1s
1
µ + t2s

2
µ + . . . + tµ−1s

µ−1
µ , although Abel’s given proof of the

fact that t1 = t2 = . . . = tµ−1 = 0 is not quite complete. In the notes at the end
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of the second volume of Abel’s Works, Sylow has explained how to complete the

proof (p. 332–335) in order to finally obtain p′µ
1 s′ = pµ

ν sν for some ν between 2 and

µ − 1; this shows that p
µ

1 s is root of an equation of degree ≤ µ − 1.

Changing s, it is possible to get p1 = 1 and then, we have as usual p0 =
1
µ
(z1 + z2 + . . . + zµ) a known quantity, s

1
µ = 1

µ
(z1 + ωµ−1z2 + . . . + ωzµ), p2s

2
µ

= 1
µ
(z1 + ωµ−2z2 + . . . + ω2zµ), . . . ; this gives

p2s =
(

1

µ

)µ−1

(z1+ω−2z2+. . .+ω−2(µ−1)zµ)(z1+ω−1z2+. . .+ω−(µ−1)zµ)µ−2,

p3s =
(

1

µ

)µ−2

(z1+ω−3z2+. . .+ω−3(µ−1)zµ)(z1+ω−1z2+. . .+ω−(µ−1)zµ)µ−3, etc.

By the usual Lagrangian stratagem, Abel proves that q1 = pms is a rational

function of s and the known quantities for 2 ≤ m ≤ µ − 1. The ν distinct values

of s are of the form p
µ
msm with 2 ≤ m ≤ µ − 1; Abel shows that the irreducible

equation of which s is a root is cyclic of degree dividing µ − 1, with roots s, s1 =
θs, . . . , sν−1 = θν−1s, where θs = ( fs)µsmα

, f rational, 2 ≤ m ≤ µ − 1 and α

a divisor of µ− 1. He finally arrives at the following form for the root z1 of ψy = 0:

z1 = p0 + s
1
µ + s

1
µ

1 + . . . + s
1
µ

ν−1 + ϕ1s · s
m
µ + ϕ1s1 · s

m
µ

1

+ . . . + ϕ1sν−1 · s
m
µ

ν−1 + ϕ2s · s
m2

µ + ϕ2s1 · s
m2

µ

1 + . . . + ϕ2sν−1 · s
m2

µ

ν−1

+ . . . + ϕα−1s · s
mα−1

µ + ϕα−1s1 · s
mα−1

µ

1 + . . . + ϕα−1sν−1 · s
mα−1

µ

ν−1 ,

where the ϕ j are rational functions and

s
1
µ = Aa

1
µ a

mα

µ

1 a
m2α

µ

2 . . . a
m(ν−1)α

µ

ν−1 ,

s
1
µ

1 = A1a
mα

µ a
m2α

µ

1 a
m3α

µ

2 . . . a
1
µ

ν−1,

. . . s
1
µ

ν−1 = Aν−1a
m(ν−1)α

µ a
1
µ

1 a
mα

µ

2 . . . a
m(ν−2)α

µ

ν−1 ,

generalising the formcommunicated toCrelle inmarch1826.Naturallya,a1,. . .,aν−1

are roots of a cyclic equation of degree dividing µ−1, but Abel does not say anything

about it, thatpartof thepaperbeingalmost reduced tocomputations.Kronecker (1853)

rediscovered this result, and stated it more precisely, also studying the form of the roots

of cyclic equations.

The last part of the paper contains computations to establish the second state-

ment relative to the problem “To find the most general algebraic expression which

may satisfy an equation of given degree”; Sylow gives an interpretation of these

computations at the end of the volume (p. 336–337).



66 C. Houzel

4 Hyperelliptic Integrals

Abel studied Legendre’s Exercices de Calcul intégral at the fall of 1823 and this

book inspired him a series of new important discoveries; we already saw some of

them. A memoir presented in 1826 to the Royal Society of Sciences in Throndhjem

(Œuvres, t. I, p. 40–60) is devoted to a generalisation of Legendre’s formula for

the exchange of the parameter and the argument in elliptic integrals of the third

kind. Abel considers an integral p =
∫

e fxϕxdx

x−a
taken from x = c, where f is

a rational function and ϕx = k(x + α)β(x + α′)β
′
. . . (x + α(n))β

(n)
with β, β′, . . .

rational numbers; derivating with respect to the parameter a and comparing with the

derivative of e fxϕx

x−a
with respect to x, he obtains

dp

da
−

(

f ′a +
ϕ′a

ϕa

)

p = (38)

−
e fxϕx

x − a
+

e fcϕc

c − a
+

∑∑

pγ (p)ap′
∫

e fxϕx · x p−p′−2dx

−
∑ β(p)

a + α(p)

∫

e fxϕxdx

x + α(p)
+

∑∑ µ(p)δ(p)

(a + ε(p))µ
(p)−p′+2

∫

e fxϕxdx

(x + ε(p))p′

if fx =
∑

γ (p)x p +
∑

δ(p)

(x+ε(p))µ
(p) . When f is polynomial (δ(p) = 0) and

ψx = (x + α)(x + α′) . . . (x + α(n)),

there is another formula

dp

da
−

(

f ′a +
ϕ′a

ϕa

)

p =
e fxϕx · ψx

ψa(a − x)
−

e fcϕc · ψc

ψa(a − c)
(39)

+
∑∑

ϕ(p, p′)
ap′

ψa

∫

e fxϕx · x pdx,

where ϕ(p, p′) = (p+1)ψ(p+p′+2)

2·3...(p+p′+2)
+

(

ψ
ϕ′
ϕ + f ′

)(p+p′+1)

2·3...(p+p′+1)
(F, F ′, . . . denoting the values at

x = 0 of the successive derivatives of a function Fx).

As
∫

(

dp −
(

ϕ′a
ϕa

+ f ′a
)

pda
)

e− fa

ϕa
= pe− fa

ϕa
, taking c such that e fcϕc = 0 in

(38) or such that e fcϕc · ψc = 0 in (39), Abel gets

e− fa

ϕa

∫

e fxϕxdx

x − a
− e fxϕx

∫

e− fada

(a − x)ϕa
(40)

=
∑∑

pγ (p)

∫

e− faap′
da

ϕa
·
∫

e fxϕx · x p−p′−2dx

−
∑

β(p)

∫

e− fada

(a + α(p))ϕa
·
∫

e fxϕxdx

x + α(p)

+
∑∑

µ(p)δ(p)

∫

e− fada

(a + ε(p))µ
(p)−p′+2ϕa

·
∫

e fxϕxdx

(x + ε(p))p′
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and

e− fa

ϕa

∫

e fxϕx.dx

x − a
− e fxϕx · ψx

∫

e− fada

(a − x)ϕa · ψa
(41)

=
∑∑

ϕ(p, p′)

∫

e− faap′
da

ϕa · ψa
·
∫

e fxϕx · x pdx

when f is a polynomial; the integrals with respect to a must be taken from a value

which annihilates e− fa

ϕa
.

Abel gives special cases of these formulae, for instance when ϕ is the constant 1;

if more-over fx = xn , one has

e−an

∫

exn
dx

x − a
− exn

∫

e−an
da

a − x

= n

(∫

e−an
an−2da ·

∫

exn
dx +

∫

e−an
an−3da ·

∫

exn
xdx + . . .

+
∫

ean
da ·

∫

exn
xn−2dx

)

.

When fx = 0, (40) gives

ϕx

∫

da

(a − x)ϕa
−

1

ϕa

∫

ϕxdx

x − a

= β

∫

da

(a + α)ϕa
·
∫

ϕxdx

x + α
+ β′

∫

da

(a + α′)ϕa
·
∫

ϕxdx

x + α′ + . . .

+β(n)

∫

da

(a + α(n))ϕa
·
∫

ϕxdx

x + α(n)

and (41) 1
ϕa

∫

ϕxdx

x−a
− ϕx · ψx

∫

da
(a−x)ϕa·ψa

=
∑∑

ϕ(p, p′)
∫

ap′
da

ϕa·ψa
·
∫

ϕx · x pdx. If,

in this last formula, β = β′ = . . . = β(n) = m, as ϕx = (ψx)m, ϕ(p, p′) =
(p + 1 + m(p + p′ + 2))k(p+p′+2), where k( j) is the coefficient of x j in ψx, so

1

(ψa)m

∫

(ψx)mdx

x − a
− (ψx)m+1

∫

da

(a − x)(ψa)m+1

=
∑∑

k(p+p′+2)(p + 1 + m(p + p′ + 2))

∫

ap′
da

(ψa)m+1
·
∫

(ψx)m x pdx,

equality which reduces to

√

ψa

∫

dx

(x − a)
√

ψx
−

√

ψx

∫

da

(a − x)
√

ψa
(42)

=
1

2

∑∑

(p − p′)k(p+p′+2)

∫

ap′
da

√
ψa

·
∫

x pdx
√

ψx

when m = − 1
2

and this gives an extension to hyperelliptic integrals of Legen-

dre’s formula. If, for example ψx = 1 + αxn , one has
√

1 + αan
∫

dx

(x−a)
√

1+αxn
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−
√

1 + αxn
∫

da

(a−x)
√

1+αan = α
2

∑

(n − 2p′ − 2)
∫

ap′
da√

1+αan ·
∫

xn−p′−2dx√
1+αxn . The ellip-

tic case corresponds to ψx = (1 − x2)(1 − αx2) and leads to

√

(1 − a2)(1 − αa2)

∫

dx

(x + a)
√

(1 − x2)(1 − αx2)

−
√

(1 − x2)(1 − αx2)

∫

da

(a + x)
√

(1 − a2)(1 − αa2)

= α

∫

da
√

(1 − a2)(1 − αa2)
·
∫

x2dx
√

(1 − x2)(1 − αx2)

−α

∫

a2da
√

(1 − a2)(1 − αa2)
·
∫

dx
√

(1 − x2)(1 − αx2)

or, with x = sin ϕ and a = sin ψ,

cos ψ
√

1 − α sin2 ψ

∫

dϕ

(sin ϕ + sin ψ)
√

1 − α sin2 ϕ

− cos ϕ
√

1 − α sin2 ϕ

∫

dψ

(sin ψ + sin ϕ)
√

1 − α sin2 ϕ

= α

∫

dψ
√

1 − α sin2 ψ
·
∫

sin2 ϕdϕ
√

1 − α sin2 ϕ

−α

∫

sin2 ψdψ
√

1 − α sin2 ψ
·
∫

dϕ
√

1 − α sin2 ϕ
.

The formula (40) with fx = x gives

e−a

ϕa

∫

exϕxdx

x − a
− exϕx

∫

e−ada

(a − x)ϕa
= −

∑

β(p)

∫

e−ada

(a + α(p))ϕa
·
∫

exϕxdx

x + α(p)

that is, for ϕx =
√

x2 − 1:

ex
√

x2 − 1

∫

e−ada

(a − x)
√

a2 − 1
−

e−a

√
a2 − 1

∫

exdx
√

x2 − 1

x − a

=
1

2

∫

e−ada

(a + 1)
√

a2 − 1
·
∫

exdx
√

x2 − 1

x + 1

+
1

2

∫

e−ada

(a − 1)
√

a2 − 1
·
∫

exdx
√

x2 − 1

x − 1
.

Let us turn back to the formula (41) with β = β′ = . . . = β(n) = m, but with f

any polynomial:
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e− fa

(ψa)m

∫

e fx(ψx)mdx

x − a
− e fx(ψx)m+1

∫

e− fada

(a − x)(ψa)m+1

=
∑∑

((p + p′ + 2)γ (p+p′+2) + (p + 1 + m(p + p′ + 2))k(p+p′+2))

×
∫

e− faap′
da

(ψa)m+1
·
∫

e fx(ψx)m x pdx,

that is

e− fa
√

ψa

∫

e fxdx

(x − a)
√

ψx
− e fx

√

ψx

∫

e− fada

(a − x)
√

ψa

=
∑∑

(

(p + p′ + 2)γ (p+p′+2) +
1

2
(p − p′)k(p+p′+2)

)

×
∫

e− faap′
da

(ψa)m+1
·
∫

e fx(ψx)m x pdx

when m = − 1
2
; if moreover fx = x and ψx = 1 − x2, this gives e−a

√
1 − a2

×
∫

ex dx

(x−a)
√

1−x2
= ex

√
1 − x2

∫

e−ada

(a−x)
√

1−a2
or cos ψesin ψ

∫

esin ϕdϕ

sin ϕ+sin ψ
= cos ϕesin ϕ

×
∫

esin ψdψ

sin ψ+sin ϕ
(integrals from ϕ,ψ = π

2
).

Abel also applies these formulae to definite integrals: the formula (40) with f

polynomial gives

x′′
∫

x′

e fxϕxdx

x − a
(43)

= e faϕa
∑∑

(p + p′ + 2)γ (p+p′+2)

∫

a′

e− faap′
da

ϕa
·

x′′
∫

x′

e fxϕxdx

−e faϕa
∑

β(p)

∫

a′

e− fada

(a + α(p))ϕa
·
∫

e fxϕxdx

x + α(p)

when x′, x′′ annihilate e fxϕx and a′ annihilates e− fa

ϕa
. For fx = 0, this gives

x′′
∫

x′

ϕxdx

x − a
= −ϕa

∑

β(p)

∫

a′

da

(a + α(p))ϕa
·

x′′
∫

x′

ϕxdx

x + α(p)

and for ϕx = 1,
x′′
∫

x′

e fx dx
x−a

= e fa
∑∑

(p + p′ + 2)γ (p+p′+2)
∫

a′
e− faap′

da ·
x′′
∫

x′
e fx x pdx.

The formula (43), with e− fa′′

ϕa′′ = 0 gives
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∑

β(p)

a′′
∫

a′

e− fada

(a + α(p))ϕa
·

x′′
∫

x′

e fxϕxdx

x + α(p)

=
∑∑

(p + p′ + 2)γ (p+p′+2)

a′′
∫

a′

e− faap′
da

ϕa
·

x′′
∫

x′

e fxϕxdx,

for instance
∑

β(p)
a′′
∫

a′

e−kada

(a+α(p))ϕa
·

x′′
∫

x′

ekxϕxdx

x+α(p) = 0 for fx = kx and ϕx = 1,

∑∑

(p + p′ + 2)γ (p+p′+2)

a′′
∫

a′

e− faap′
da ·

x′′
∫

x′

e fx x pdx = 0.

Using now (41) with x′, x′′ annihilating e fxϕx · ψx, Abel gets

x′′
∫

x′

e fxϕxdx

x − a
= e faϕa

∑∑

ϕ(p, p′)

∫

a′

e− faap′
da

ϕa · ψa
·

x′′
∫

x′

e fxϕx · x pdx

and, when β = β′ = . . . = β(n) = m,

x′′
∫

x′

e fx(ψx)mdx

x − a
= e fa(ψa)m

∑∑

ϕ(p, p′)

∫

a′

e− faap′
da

(ψa)m+1
·

x′′
∫

x′

e fx(ψx)m x pdx.

(44)

For fx = 0 and m = − 1
2
, this gives

x′′
∫

x′

dx

(x − a)
√

ψx
=

1

2
√

ψa

∑∑

(p − p′)k(p+p′+2)

∫

a′

ap′
da

√
ψa

·
x′′

∫

x′

x pdx
√

ψx

expressing the periods of an hyperelliptic integral of the third kind by means of the

periods of the integrals of the first two kinds; in the elliptic case,

ψx = (1 − x2)(1 − αx2),

one has
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√

(1 − a2)(1 − αa2)

x′′
∫

x′

dx

(x − a)
√

(1 − x2)(1 − αx2)

= α

∫

a′

da
√

(1 − a2)(1 − αa2)
·

x′′
∫

x′

x2dx
√

(1 − x2)(1 − αx2)

−α

∫

a′

a2da
√

(1 − a2)(1 − αa2)
·

x′′
∫

x′

dx
√

(1 − x2)(1 − αx2)

with x′, x′′ and a′ = ±1 or ±
√

1
α

.

From (44) with ψx = 1 − x2n, x′ = −1, x = 1 and a′ = 1, Abel deduces

1
∫

−1

dx

(x − a)(1 − x2n)m

=
Γ(−m + 1)

n(1 − a2n)m

∑

(2p + 1 − 2mn)
Γ

(

1+2p

2n

)

Γ
(

−m + 1 + 1+2p

2n

)

∫

1

a2n−2p−2da

(1 − a2n)1−m

for m > 0. If, for example m = 1
2

and n = 3, this gives

1
∫

−1

dx

(x − a)
√

1 − x6
= −

2

3

√
π

√
1 − a6

Γ
(

1
6

)

Γ
(

2
3

)

∫

1

a4da
√

1 − a6

+
2

3

√
π

√
1 − a6

Γ
(

5
6

)

Γ
(

4
3

)

∫

1

da
√

1 − a6
.

Now if e− fa′′

ϕa′′ = 0,
∑∑

ϕ(p, p′)
a′′
∫

a′

e− faap′
da

ϕa·ψa
·

x′′
∫

x′
e fxϕx · x pdx = 0; for instance,

when ϕx = (x+α)β(x+α′)β
′
. . . (x+α(n))β

(n)
and ψa = (a+α)1−β(a+α′)1−β′

. . .

(a + α(n))1−β(n)
, with −1 < β, β′, . . . , β(n) < 0, one has

∑∑

ϕ(p, p′)

a′′
∫

a′

ap′
da

ψa
·

x′′
∫

x′

x pdx

ϕx
= 0

if x′ = −α(p), x′′ = −α(p′), a′ = −α(q) and a′′ = −α(q′). When β = β′ = . . . =
β(n) = 1

2
, denoting by ϕx a polynomial of degree n, with roots α, α′, α′′, . . . and by

F(p, x) the integral
∫

x pdx√
ϕx

, this relation becomes
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∑∑

(p − p′)k(p+p′+2)F(p, α)F(p,′ , α′)

+
∑∑

(p − p′)k(p+p′+2)F(p, α′′)F(p′, α′′′)

=
∑∑

(p − p′)k(p+p′+2)F(p, α)F(p,′ , α′′′)

+
∑∑

(p − p′)k(p+p′+2)F(p, α′′)F(p′, α′),

and, ϕx = (1−x2)(1−c2x2) (elliptic case), α = 1, α′ = −1, α′′ = 1
c

and α′′′ = − 1
c
,

we find

F(1)E

(

1

c

)

= E(1)F

(

1

c

)

,

where Fx =
∫

0

dx√
(1−x2)(1−c2x2)

and Ex =
∫

0

x2dx√
(1−x2)(1−c2x2)

.

A short posthumous paper Sur une propriété remarquable d’une classe très

étendue de fonctions transcendantes (Œuvres, t. II, p. 43–46, mem. VIII) contains

some of the same formulae. Abel starts from a differential equation 0 = sy + t
dy

dx
,

where t = ϕx and s = fx are polynomials; then, for r = ϕ′x− fx

x−a
− ϕx

(x−a)2 =
− ϕa

(x−a)2 − fa

x−a
+ R, with

R =
1

2
ϕ′′a − f ′a +

(

1

3
ϕ′′′a −

1

2
f ′′a

)

(x − a)

+
(

1

2 · 4
ϕ′′′′a −

1

2 · 3
f ′′′a

)

(x − a)2 + . . . ,

and y = ψx solution of the differential equation, one has

∫ rydx =
yϕx

x − a
or

yϕx

x − a
= −ϕa

dz

da
− fa · z +

∫

Rydx,

where z =
∫

ydx

x−a
. If z = pψa, this equality becomes

∫

Rydx − ϕx·ψx

x−a
= ϕa · ψa

dp

da

and we have

p =
1

ψa

∫

ψxdx

x − a
− ψx · ϕx

∫

da

(a − x)ψa · ϕa
=

∫∫

R · ψx

ϕa · ψa
dxda

=
∑

((n + 1)αm+n+2 − βm+n+1)

∫

amda

ϕa · ψa

∫

xnψxdx,

where αk (resp. βk) is the coefficient of xk in ϕx (resp. fx); the origin of integration

in x (resp. in a) must annihilate ψx ·ϕx (resp. 1
ψa

). Note that, up to a constant factor,

ψx = e
−

∫ fx
ϕx dx

has the form ep

(x−δ)m (x−δ1)m1 ...
, where p is a rational function (not the

preceding p !) and 0 < m, m1, . . . < 1. When ψx = 1√
ϕx

, fx − 1
2
ϕ′x = 0 and

βm = 1
2
(m + 1)αm+1 and we find the formula (42).
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The following paper in the second volume of Abel’s Works (p. 47–54, mem. IX)

extends this theory to the case of a linear differential equation of order m with

polynomial coefficients:

0 = sy + s1

dy

dx
+ . . . + sm

dm y

dxm
, (45)

sk = ϕk(x) polynomial. Abel looks for a function r such that

∫ rydx = vy + v1

dy

dx
+ vm−2

dm−2 y

dxm−2
+ tsm

dm−1 y

dxm−1
,

with t a given function, taken equal to 1
x−a

. He finds that vµ−1 = sµt − dvµ

dx
for

0 ≤ µ ≤ m − 1 (with v−1 = −r and vm−1 = tsm), so that vµ−1 = sµt − d(sµ+1t)

dx
+

d2(sµ+2t)

dx2 − . . . and

−r = st −
d(s1t)

dx
+

d2(s2t)

dx2
− . . . + (−1)m dm(sm t)

dxm
.

Now sµt = ϕµ(a)

x−a
+ Rµ, where Rµ is polynomial in x, so

−r =
ϕa

x − a
+

ϕ1a

(x − a)2
+ Γ(3)

ϕ2a

(x − a)3
+ . . . + Γ(m + 1)

ϕma

(x − a)m+1
+ ρ,

with ρ = R − dR1
dx

+ . . . + (−1)m dm R
dxm . Thus the integral z =

∫

ydx

x−a
satisfies a dif-

ferential equation ϕa · z + ϕ1a · dz
da

+ . . . + ϕma · dm z
dam = −χ ′ −

∫

ρydx, where

χ = vy + v1
dy

dx
+ vm−2

dm−2 y

dxm−2 + tsm
dm−1 y

dxm−1 and χ ′ = χ − χ0 (where χ0 is the value of

χ at the origin of integration); Abel writes the solution of this equation in terms of

a fundamental system of solutions of (45).

In the second part of the paper, Abel wishes to find coefficients α1, α2, . . . , αm

depending on a such that z =
∫

(

α1
x−a

+ α2

(x−a)2 + . . . + Γm·αm

(x−a)m

)

ydx satisfy a differ-

ential equation of the form βz + γ dz
da

= χ +
∫

ρydx; he writes induction relations

between the αµ and, supposing − β

γ
= ε constant, a differential equation to deter-

mine γ .

The first article on Abelian integrals published by Abel in Crelle’s Journal

(1826, Œuvres, t. I, p. 104–144) is devoted to the search for differential forms ρdx√
R

,

with ρ and R polynomials, such that their integrals have the form log p+q
√

R

p−q
√

R
= z,

with p, q polynomials. As dz = pqdR+2(pdq−qdp)R

(p2−q2 R)
√

R
, one must have ρ = M

N
with

M = pq dR
dx

+2
(

p
dq

dx
− q

dp

dx

)

R and N = p2 −q2 R. It follows that qρ = 2 dp

dx
− p dN

Ndx

and p dN
Ndx

must be polynomials. If

N = (x + a)m(x + a1)
m1 . . . (x + an)

mn ,

dN
Ndx

= m
x+a

+ m1
x+a1

+ . . . + mn

x+an
and we see that p is divisible by

(x + a)(x + a1) · · · (x + an).
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Hence p = (x + a)(x + a1) · · · (x + an)p1 and

(x + a)m(x + a1)
m1 · · · (x + an)

mn = p2
1(x + a)2(x + a1)

2 · · · (x + an)
2 − q2 R

which shows that m = m1 = . . . = mn = 1 if p and q are relatively prime (R is

supposed to be square free) and that R = (x + a)(x + a1) · · · (x + an)R1 = NR1.

Now p1, q, N and R1 are determined by the equation p2
1 N − q2 R1 = 1 and so

ρ = p1q dR
dx

+ 2
(

p
dq

dx
− q

dp

dx

)

R1.

Abel studies p2
1 N − q2 R1 = 1, or more generally p2

1 N − q2 R1 = v (where v is

polynomial of degree less than the mean of the degrees of N and R1), as a Diophantine

equation in the ring of polynomials. The first observation is that N p2
1 and R1q2 must

have the same degree and so δR = δ(NR1) = 2(δq −δp1 +δR1) (where δ designates

the degree) is an even number, so we can put δN = n − m and δR1 = n + m. By

Euclidian division R1 = Nt + t ′, with δt = 2m and δt ′ < n − m. Using the method

of indeterminate coefficients, Abel shows that there exist t1 and t ′1 such that δt ′1 < m

and t = t2
1 +t ′1. The equation now becomes (p2

1−q2t2
1)N−q2s = v, with s = Nt ′1+t ′

and shows that
(

p1
q

)2

and t2
1 differ by a rational fraction of degree less than δt1, and

as a consequence the polynomial part of p1
q

is ±t1, say t1. Thus p1 = t1q + β with

δβ < δq and one can verify that
(

q

β
− t1 N

s

)2

= R1 N

s2 − v

sβ2 ; if R = R1 N = r2 + r ′

with δr ′ < δr, we see as before that q

β
− t1 N

s
and r

s
have the same polynomial part, so

q

β
and r+t1 N

s
have the same polynomial part 2µ and q = 2µβ + β1 with δβ1 < δβ.

Now the Diophantine equation becomes

s1β
2 − 2r1ββ1 − sβ2

1 = v

where s1 = N + 4µt1 N − 4sµ2 and r1 = 2µs − t1 N; as r2
1 + ss1 = R, δr1 = n and

δs, δs1 < n.

Our equation may be written
(

β

β1
− r1

s1

)2

=
(

r1
s1

)2

+ s
s1

+ v

s1β2
1

which shows

that β

β1
− r1

s1
and r1

s1
have the same polynomial part up to sign. Writing µ1 for the

polynomial part of r1
s1

, the polynomial part of β

β1
is 2µ1 and β = 2β1µ1 + β2 with

δβ2 < δβ1. The equation can now be rewritten s2β
2
1 − 2r2β1β2 − s1β

2
2 = −v, where

r2 = 2µ1s1 − r1 and s2 = s + 4r1µ1 − 4s1µ
2
1, from which it is easy to see that

δr2 = δr1 > δs2. Continuing in this way, we obtain

snβ
2
n−1 − 2rnβn−1βn − sn−1β

2
n = (−1)n−1v

with βn−1 = 2µnβn + βn+1, µn integral part of rn

sn
, rn = 2µn−1sn−1 − rn−1 and

sn = sn−2 + 4rn−1µn−1 − 4sn−1µ
2
n−1; as δβ > δβ1 > . . . > δβn > . . . , there is an

m such that βm = 0, giving the equation smβ2
m−1 = (−1)m−1v. The sequence (βk) is

determined by the Euclidian algorithm and βm−1 is the g.c.d. of β and β1, and so 1

if p and q are relatively prime and v = (−1)m−1sm .

In the initial problem, we had v = 1, so we must take sm constant. As the sk are

of degree k, this gives n − 1 conditions on the 2n coefficients of R1 and N , once the
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index m is chosen. Thus p1
q

= t1+ 1

2µ+ 1

2µ1+
...+ 1

2µm−1

and ρ =
(

p1
dN
dx

+ 2N
dp1
dx

)

: q,

of degree n − 1.

Abel adds some observations. The first is that one may put N = 1 in the problem,

for

log
p + q

√
R

p − q
√

R
=

1

2
log

p2
1 N + q2 R1 + 2p1q

√
R

p2
1 N + q2 R1 − 2p1q

√
R

=
1

2
log

p′ + q′√R

p′ − q′
√

R

with p′ = p2
1 N+q2 R1 and q′ = 2p1q. In that case, the equation takes the Pell-Fermat

form p′2 − q′2 R = 1 and ρ = 2
q′

dp′

dx
. The second is that, if

αk

βk
is the k-th convergent

of the continued fraction for p1
q

, α2
k N − β2

k R1 = (−1)k−1sk and so, putting

zk = αk

√
N + βk

√
R1 and z′

k = αk

√
N − βk

√
R1,

we get
zk

z′
k

= rk+
√

R

rk−
√

R

zk−1

z′
k−1

. Lastly,

log
p1

√
N + q

√
R1

p1

√
N − q

√
R1

= log
t1

√
N +

√
R1

t1
√

N −
√

R1

+ log
r1

√
N +

√
R

r1

√
N −

√
R

+ . . . + log
rm

√
N +

√
R

rm

√
N −

√
R

.

Abel also shows that

ρdx = 2(
1

2
t1dN + Ndt1 + dr1 + . . . + drm − µds − . . . − µm−1dsm−1).

As
(

p1
q

)2

= R1
N

+ v

q2 N
, one sees that the continued fraction for p1

q
is obtained from

that for

√

R1
N

. Let us suppose that N = 1, so that t1 = r and
√

R = r+ 1

2µ+ 1
2µ1

+
...

. An

easy computation shows that r2
m + smsm−1 = r2

m−1 + sm−1sm−2 = . . . = r2
1 + ss1 =

R = r2 + s. If sm = a constant, we have r2
m+1 − r2 = s − asm+1 and, since

δrm+1 = δr > δs, δsm+1, this implies rm+1 = r and sm+1 = s
a
. This shows that the

polynomial part µm+1 of
rm+1

sm+1
is equal to aµ and sm+2 = as1, rm+2 = r1 and so

on, in general we have rm+n = rn−1, rm−n = rn, sm±n = a(−1)n
sn−1 and µm±n =

a(−1)n−1
µn−1. This shows that the continued fraction is periodic with partial quotients

r, 2µ, 2µ1, . . . ,
2µ1

a
, 2aµ, 2r

a
, 2aµ,

2µ1
a

, . . . , 2µ, 2r, 2µ, . . . ; if m = 2k − 1 is odd,

sk−1 = a(−1)k
sk−1 and a = 1. Conversely, one sees that if

√
R has a continued

fraction of the preceding form, sm = a. Abel may conclude by a criterion for the

existence of a polynomial ρ such that
∫

ρdx√
R

= log y+
√

R

y−
√

R
with y rational:

√
R must
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be of the form r + 1

2µ+ 1

2µ1+
...+ 1

2µ1+ 1

2µ+ 1

2r+ 1

2µ+ 1

2µ1+
...

and then y = r +
1

2µ + 1

2µ1+
...+ 1

2µ1+ 1

2µ+ 1
2r

.

Conversely, Abel proves that sk = sk−2 implies rk = rk−1, µk = µk−2, rk+1 =
rk−2, sk+1 = sk−3 etc. and generally rk+n = rk−n−1, µk+n = µk−n−2, sk+n = sk−n−2;

for n = k−1, this gives s2k−1 = s−1 = 1. If sk = csk−1, he finds µk = 1
c
µk−1, rk+1 =

rk−1, sk+1 = 1
c
sk−2, . . . , s2k = c(−1)k

. The integral found is

∫

2
√

R
(dr + dr1 + . . . + drk−1 +

1

2
drk − µds − µ1ds1 − . . . − µk−1dsk−1)

= log
r +

√
R

r −
√

R
+ log

r1 +
√

R

r1 −
√

R
+ . . . + log

rk−1 +
√

R

rk−1 −
√

R
+

1

2
log

rk +
√

R

rk −
√

R

when m = 2k and
∫

2
√

R
(dr + dr1 + . . . + drk−1 − µds − µ1ds1 − . . . − µk−2dsk−2 −

1

2
µk−1dsk−1)

= log
r +

√
R

r −
√

R
+ log

r1 +
√

R

r1 −
√

R
+ . . . + log

rk−1 +
√

R

rk−1 −
√

R

when m = 2k − 1.

In the elliptic case, where R is of degree 4 = 2n, n = 2 and the sm are of

degree 1, so there is only one condition to write in order to have sm = const.

If R = (x2 + ax + b)2 + ex, we have r = x2 + ax + b, s = ex, µ = x+a
e

and then r1 = x2 + ax − b, s1 = 4b
e

x + 4ab
e

+ 1, µ1 = e
4b

x − e2

16b2 and s2 =
(

ae2

4b2 + e3

16b3

)

x − e2

4b2

(

ae
4b

+ e2

16b2 − b
)

. In order to make s1 constant, we have only to

put b = 0 and we find that
∫

(3x+a)dx√
(x2+ax)2+ex

= log x2+ax+
√

R

x2+ax−
√

R
, with R = (x2+ax)2+ex.

In order to make s2 constant, we put e = −4ab, R = (x2 +ax +b)2 −4abx and find

∫

(4x + a)dx
√

(x2 + ax + b)2 − 4abx
= log

x2 + ax + b +
√

R

x2 + ax + b −
√

R

+
1

2
log

x2 + ax − b +
√

R

x2 + ax − b −
√

R
.

Abel also computes the case in which s3 is constant, which is given by
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e = −2b(a ±
√

a2 + 4b)

and
∫

(5x + 3
2

∓ 1
2

√
a2 + 4b)dx

√

(x2 + ax + b)2 − 2bx(a ±
√

a2 + 4b)

= log
x2 + ax + b +

√
R

x2 + ax + b −
√

R

+ log
x2 + ax − b +

√
R

x2 + ax − b −
√

R
,

and the case where s4 is constant, which leads to e = −b(3a ±
√

a2 + 8b) and

∫

(6x + 3
2
a − 1

2

√
a2 + 8b)dx

√

(x2 + ax + b)2 − b(3a +
√

a2 + 8b)x

= log
x2 + ax + b +

√
R

x2 + ax + b −
√

R
+ log

x2 + ax − b +
√

R

x2 + ax − b −
√

R

+
1

2
log

x2 + ax + 1
4
a(a −

√
a2 + 8b) +

√
R

x2 + ax + 1
4
a(a −

√
a2 + 8b) −

√
R

.

At the end of the memoir, Abel states a theorem according to which, whenever

an integral
∫

ρdx√
R
, ρ and R polynomials, may be expressed by logarithms, it is always

in the form A log p+q
√

R

p−q
√

R
, with A constant, p and q polynomials.

Chebyshev (1860) and Zolotarev (1872) studied the same problem in the elliptic

case looking for arithmetical conditions on the coefficients of R, these latter supposed

to be integers.

The first text written by Abel on elliptic functions (between 1823 and 1825), with

the title Théorie des transcendantes elliptiques (Œuvres, t. II, p. 87–188), also deals

with this problem but it was not published by Abel. In the first chapter, Abel studies

the conditions under which an elliptic integral
∫

Pdx√
R

, with P a rational function

and R = α + βx + γx2 + δx3 + εx4, is an algebraic function. At first taking P

polynomial, he observes that this algebraic function must be rational in x and
√

R,

so of the form Q′+Q
√

R with Q′ and Q rational; since dQ′ is rational, we may write

d(Q
√

R) = Pdx√
R

. The function Q is a polynomial otherwise its poles would remain

as poles in the differential: Q = f(0)+ f(1)x + . . .+ f(n)xn and d(Q
√

R) = S dx√
R

,

with

S = R
dQ

dx
+

1

2
Q

dR

dx
= ϕ(0) + ϕ(1)x + . . . + ϕ(m)xm .

This gives

ϕ(p) = (p + 1) f(p + 1) . . . α +
(

p +
1

2

)

f(p) · β + p f(p − 1) · γ

+
(

p −
1

2

)

f(p − 2) · δ + (p − 1) f(p − 3) · ε
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and m = n+3. Abel draws the conclusion that the integrals
∫

xm dx√
R

may be expressed

as linear combinations of those with 0 ≤ m ≤ 2 and an algebraic function; but
∫

dx√
R
,
∫

xdx√
R

and
∫

x2dx√
R

are independent when the reductions admitted involve only

algebraic functions. The reduction of
∫

xm dx√
R

is given by a system of m − 2 linear

equations ϕ(p) = 0 for 3 ≤ p ≤ m − 1, ϕ(m) = −1 to determine the f(p)

(0 ≤ p ≤ m − 3) and the formulae

ϕ(0) = f(1) · α +
1

2
f(0) · β, ϕ(1) = 2 f(2) · α +

3

2
f(1) · β + f(0) · γ,

ϕ(2) = 3 f(3) · α +
5

2
f(2) · β + 2 f(1) · γ +

3

2
f(0) · δ.

For instance
∫

x4dx
√

R
=

(

5

24

βδ

ε2
−

1

3

α

ε

)∫

dx
√

R
+

(

5

12

γδ

ε2
−

1

2

β

ε

)∫

xdx
√

R

+
(

5

8

δ2

ε2
−

2

3

γ

ε

)∫

x2dx
√

R
−

(

5

12

δ

ε2
−

1

3

1

ε
x

)√
R.

When the values found for ϕ(0), ϕ(1) and ϕ(2) are 0, the integral is alge-

braic; for instance, when R = 125
256

δ4

ε3 + 25
32

δ3

ε2 x + 15
16

δ2

ε
x2 + δx3 + εx4,

∫

x4dx√
R

=

−
(

5
12

δ

ε2 − 1
3

1
ε
x
)√

R.

In a completely analogous manner, Abel reduces
∫

dx

(x−a)m
√

R
to a linear combi-

nation of
∫

dx√
R

,
∫

xdx√
R
,
∫

x2dx√
R

,
∫

dx

(x−a)
√

R
and an algebraic function Q

√
R, Q having

only one pole in a: Q = ψ(1)

x−a
+ ψ(2)

(x−a)2 + . . . + ψ(m−1)

(x−a)m−1 . Indeed d(Q
√

R) = S dx√
R

with

S = ϕ(0) + ϕ(1)x + ϕ(2)x2 +
χ(1)

x − a
+

χ(2)

(x − a)2
+ . . . +

χ(m)

(x − a)m
,

ϕ(0) =
(

1

2
aδ + εa2

)

ψ(1) −
1

2
(δ + 4aε)ψ(2) − εψ(3),

ϕ(1) =
1

2
δψ(1), ϕ(2) = εψ(1)

and χ(p) = −α′(p−1)ψ(p−1)−β′(p− 1
2
)ψ(p)−γ ′ pψ(p+1)−δ′(p+ 1

2
)ψ(p+2)

−ε′(p+1)ψ(p+3); here α′ = α+βa+γa2+δa3+εa4, β′ = β+2γa+3δa2+4εa3,

γ ′ = γ + 3δa + 6εa2, δ′ = δ + 4εa and ε′ = ε, so that R = α′ + β′(x − a) +
γ ′(x − a)2 + δ′(x − a)3 + ε′(x − a)4. In order to get the announced reduction, we

determine the ψ(p) by a linear system χ(p) = 0 for 2 ≤ p ≤ m − 1, χ(m) = −1;

then ϕ(0), ϕ(1), ϕ(2) are given by the preceding formulae and

χ(1) = −
1

2
β′ψ(1) − γ ′ψ(2) −

3

2
δ′ψ(3) − 2ε′ψ(4).

For instance,
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∫

dx

(x − a)2
√

fx
= −

εa2 + 1
2
δa

fa

∫

dx
√

fx
+

δ

2 fa

∫

xdx
√

fx
+

ε

fa

∫

x2dx
√

fx

−
1

2

f ′a

fa

∫

dx

(x − a)
√

fx
−

√
fx

(x − a) fa
, (46)

where R = fx. This reduction does not work if α′ = fa = 0, which gives χ(m) = 0

and in that case, we must take Q with a pole of order m in a and we see that
∫

dx

(x−a)m
√

R
is reducible to

∫

dx√
R
,
∫

xdx√
R

and
∫

x2dx√
R

even for m = 1:

∫

dx

(x − a)
√

R
= −

2εa2 + aδ

f ′a

∫

dx
√

R
+

δ

f ′a

∫

xdx
√

R
+

2ε

f ′a

∫

x2dx
√

R
−

2

f ′a

√
R

x − a
.

(47)

The next task for Abel is to find the possible relations between integrals of the

form
∫

dx

(x − b)
√

R
.

It is easy to see that the only possible relations have the form

ϕ(0)

∫

dx

(x − a)
√

R
+ ϕ(1)

∫

dx

(x − a′)
√

R

+ϕ(2)

∫

dx

(x − a′′)
√

R
+ ϕ(3)

∫

dx

(x − a′′′)
√

R

=
√

R

(

A

x − a
+

A′

x − a′ +
A′′

x − a′′ +
A′′′

x − a′′′

)

,

where a, a′, a′′, a′′′ are the roots of R. Using the preceding reduction and the

fact that
∫

dx√
R
,
∫

xdx√
R

and
∫

x2dx√
R

are independent, Abel finds A = − 2ϕ(0)

f ′a , A′ =
− 2ϕ(1)

f ′a′ , A′′ = − 2ϕ(2)

f ′a′′ , A′′′ = − 2ϕ(3)

f ′a′′′ , A(2εa2 + aδ) + A′(2εa′2 + a′δ) + A′′(2εa′′2 +
a′′δ) + A′′′(2εa′′′2 + a′′′δ) = 0 and A + A′ + A′′ + A′′′ = 0; it is possible to choose

A′′′ = 0 and this gives the relation

ϕ(0)

∫

dx

(x − a)
√

R
+ ϕ(1)

∫

dx

(x − a′)
√

R
+ ϕ(2)

∫

dx

(x − a′′)
√

R

=
√

R

(

A

x − a
+

A′

x − a′ +
A′′

x − a′′

)

with

ϕ(0) =
1

2
(a − a′)(a − a′′)(a − a′′′)(a′ − a′′)(a′ + a′′ − a − a′′′),

ϕ(1) =
1

2
(a′ − a)(a′ − a′′)(a′ − a′′′)(a′′ − a)(a + a′′ − a′ − a′′′),

ϕ(2) =
1

2
(a′′ − a)(a′′ − a′)(a′′ − a′′′)(a − a′)(a + a′ − a′′ − a′′′).
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Abel looks for linear relations between

∫

dx
√

R
,

∫

xdx
√

R
,

∫

x2dx
√

R
and

∫

dx

(x − a)
√

R
,

∫

dx

(x − a′)
√

R
;

using (46), he finds
∫

dx√
R

= (a−a′′)(a−a′′′)
a′′+a′′′−a−a′

∫

dx

(x−a)
√

R
+ (a′−a′′)(a′−a′′′)

a′′+a′′′−a−a′
∫

dx

(x−a′)
√

R
and

∫

x2dx
√

R
+

δ

2

∫

xdx
√

R

=
a′(a′ − a − a′′ − a′′′) · f ′a

2(a′ − a)(a + a′ − a′′ − a′′′)

∫

dx

(x − a)
√

R

+
a(a′ − a − a′′ − a′′′) · f ′a′

2(a − a′)(a + a′ − a′′ − a′′′)

∫

dx

(x − a′)
√

R

+
√

R

(a − a′)(a + a′ − a′′ − a′′′)

(

a′(a′ − a − a′′ − a′′′)

x − a
−

a(a − a′ − a′′ − a′′′)

x − a′

)

.

When a + a′ = a′′ + a′′′, these relations loose their sense and give
∫

dx

(x−a)
√

R
+

∫

dx

(x−a′)
√

R
= 2

√
R

(a′′−a)(a′′−a′)(x−a)(x−a′) .

In the second chapter of his memoir, Abel studies the integration of elliptic

integrals by logarithmic functions. Such a function must be of the form

T = A log(P + Q
√

R) + A′ log(P′ + Q′√R) + . . . + A(n) log(P(n) + Q(n)√R)

with P, Q, P′, Q′, . . . polynomials and A, A′, . . . constant, or, subtracting from dT

a rational differential T ′ = A log P+Q
√

R

P−Q
√

R
+ A′ log P′+Q′√R

P′−Q′√R
+ . . . Then dT ′ is a sum

of terms of the form M
N

· dx√
R

with M = A
2N dP

dx
−P dN

dx

Q
, N = P2 − Q2 R; the fraction M

N

has only poles of order 1, these poles are not roots of R and it is easy to see that its

polynomial part is of degree ≤ 1. Finally

T ′ = k

∫

dx
√

R
+ k′

∫

xdx
√

R
+ L

∫

dx

(x − a)
√

R
+ . . . + L(ν)

∫

dx

(x − a(ν))
√

R
,

(48)

and
∫

x2dx√
R

cannot be reduced to other integrals by means of logarithms.

Let us suppose that T ′ contains r + 1 logarithmic terms; looking at the degrees

of P, Q, P′, Q′, . . . and at the corresponding number of indeterminate coefficients

in T ′, Abel sees that the minimum value of ν is 2 and that r may be taken equal to 0.

Moreover, one may take

P = f + f ′x + f ′′x2

of degree 2, Q = 1 and N of degree 2; then f ′′ =
√

ε, f ′ = δ

2
√

ε
and f =

k(δ2−4εγ)+2k′εβ
2(δk′−4εk)

√
ε

. For k = 0 and k′ = 1, one has
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∫

xdx
√

R
= (G + H

√
K)

∫

dx

(x −
√

K)
√

R
+ (G − H

√
K)

∫

dx

(x +
√

K)
√

R

+
1

2
√

ε
log

β

δ

√
ε + δ

2
√

ε
x +

√
εx2 +

√
R

β

δ

√
ε + δ

2
√

ε
x +

√
εx2 −

√
R

,

where G = − 4αδ2ε+βδ3+4β2ε2−4βγδε

2(δ4+8βδε2−4γδ2ε)
, H = − δ

4ε
, K = 4ε

δ

εβ2−αδ2

4γδε−8βε2−δ3 .

It is possible to have N of degree 1 when (4εγ − δ2)2 + 4δ2(4εγ − δ2) −
32βδε2 − 64αε3 = 0; then f = 4εγ−δ2

8ε
√

ε
and

∫

xdx√
R

= 1
3ε

(µ′ − µδ)
∫

dx

(x+µ)
√

R

+ 1
3
√

ε
log

µ′
√

ε
+ δ

2
√

ε
x+

√
εx2+

√
R

µ′
√

ε
+ δ

2
√

ε
x+

√
εx2−

√
R

, where µ′ = 4εγ−δ2

8ε
and µ = − δ

2ε
.

Abel finds another reduction, writing R = (p + qx + rx2)(p′ + q′x + x2), P =
f(p′ + q′x + x2) and Q = 1 and choosing f such that

N = ( f 2 − r)(p′ + q′x + x2)(x − a)2;

then M
N

= 1 + L 1
x−a

with

L =
pq′ − qp′ + (rq′ − q)a2

(rq′ − q)a
, a =

q − q′ f 2

2( f 2 − r)
.

This leads to the equation f 4(q′2−4p′)− f 2(2qq′−4p−4p′r)+q2−4pr = 0 and

to the relation
∫

dx√
R

= −L
∫

dx

(x−a)
√

R
+ A log f(p′+q′x+x2)+

√
R

f(p′+q′x+x2)−
√

R
, where A = f 2−r

f(rq′−q)
.

Another formula is found by supposing N = k(x − a)4; then

(p + p′ − p′′ − p′′′)a2 − 2(pp′ − p′′ p′′′)a + pp′(p′′ + p′′′) − p′′ p′′′(p + p′) = 0,

where p, p′, p′′, p′′′ are the roots of R. In that case, M
N

= 1 − L 1
x−a

, where

L = −
2( f + a f ′ + a2 f ′′)

f ′ + 2a f ′′ , f =
√

pp′ p′′ p′′′ + ka4,

f ′ = −
p + p′ + p′′ + p′′′ + 4ka

2
√

1 + k
, f ′′ =

√
1 + k

and k = (p+p′−p′′−p′′′)2

(2(p′′+p′′′)−4a)(2(p+p′)−4a)
; so

∫

dx
√

(x − p)(x − p′)(x − p′′)(x − p′′′)

= L

∫

dx

(x − a)
√

(x − p)(x − p′)(x − p′′)(x − p′′′)

+A log
f + f ′x + f ′′x2 +

√
(x − p)(x − p′)(x − p′′)(x − p′′′)

f + f ′x + f ′′x2 −
√

(x − p)(x − p′)(x − p′′)(x − p′′′)
,
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with A = 1

2
√

(p+p′−2a)(p′′+p′′′−2a)
. All this work is inspired by Legendre’s reduction

of elliptic integrals to canonical forms as it is presented in the Exercices de Calcul

intégral but Abel’s study is deeper and more general for he investigates all the

possible relations between such integrals and proves the independance of the three

canonical kinds.

Abel also studies the general case, where M
N

= xm+k(m−1)xm−1+...+k

xm+l(m−1)xm−1+...+l
; if Q is of

degree n, P must be of degree n + 2 and m ≤ 2n + 4 which is the degree of N .

With the notations R = ϕx, P = Fx, Q = fx, a, a′, . . . , a(m−1) roots of N (with

multiplicities µ,µ′, . . . , µ(m−1)), one has

Fa( j) = ± fa( j)
√

ϕa( j) (0 ≤ j ≤ m − 1),

whence, by successive derivations, a linear system to determine the coefficients of

P and Q. Then xm + k(m−1)xm−1 + . . . + k takes in a( j) the value ±A
√

ϕa( j) · ψa( j),

where

ψx = (x − a)(x − a′) . . . (x − a(m−1))
dN

Ndx
;

this gives a linear system to get k, k′, . . . in function of A, a, a′, . . . For instance,

when µ = µ′ = . . . = µ(m−1) = 1, m = 2n + 4 = 4 if Q = 1 and Abel finds, for

the coefficients of P,

− f = i
a′a′′a′′′

(a − a′)(a − a′′)(a − a′′′)

√
ϕa + i ′

aa′′a′′′

(a′ − a)(a′ − a′′)(a′ − a′′′)

√

ϕa′

+i ′′
aa′a′′′

(a′′−a)(a′′−a′)(a′′−a′′′)

√

ϕa′′ + i ′′′
aa′a′′

(a′′′−a)(a′′′−a′)(a′′′−a′′)

√

ϕa′′′,

f ′′ =
i
√

ϕa

(a − a′)(a − a′′)
+

i ′
√

ϕa′

(a′ − a)(a′ − a′′)
+

i ′′
√

ϕa′′

(a′′ − a)(a′′ − a′)
,

f ′ =
i
√

ϕa

a − a′ +
i ′
√

ϕa′

a′ − a
− (a + a′) f ′′,

where i, i ′, i ′′, i ′′′ are equal to ±1, and A = − 1
(a+a′+a′′+a′′′) f ′′+2 f ′ . When m = 2,

Q = 1 and P2 − R = C(x − a)(x − a′)3, he finds

f ′′ =
1

8

2ϕa′ · ϕ′′a′ − (ϕ′a′)2

ϕa′√ϕa′ ,

f ′ =
1

2

ϕ′a′
√

ϕa′ −
a′

4

2ϕa′ · ϕ′′a′ − (ϕ′a′)2

ϕa′√ϕa′ ,

f =
√

ϕa −
a′

2

ϕ′a′
√

ϕa′ +
a′2

8

2ϕa′ · ϕ′′a′ − (ϕ′a′)2

ϕa′√ϕa′ ,

A = −
1

(a + 3a′) f ′′ + 2 f ′

and a, a′ related by
√

ϕa ·
√

ϕa′ = ϕa′ + 1
2
(a − a′)ϕ′a′ + 1

8
(a − a′)2 2ϕa′·ϕ′′a′−(ϕ′a′)2

ϕa′ .

When P2 − R = C(x − a)2(x − a′)2,
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f ′′ =
1

4

ϕ′a

(a − a′)
√

ϕa
+

1

4

ϕ′a′

(a′ − a)
√

ϕa′ ,

f ′ =
1

2

a′ϕ′a

(a − a′)
√

ϕa
+

1

2

aϕ′a′

(a′ − a)
√

ϕa′ ,

f =
1

4

aa′

a − a′
ϕ′a
√

ϕa
+

1

4

aa′

a′ − a

ϕ′a′
√

ϕa′ −
a′√ϕa − a

√
ϕa′

a − a′ ,

A = −
2

ϕ′a√
ϕa

+ ϕ′a′√
ϕa′

and a, a′ related by (p + p′ + p′′ + p′′′)aa′ − (pp′ − p′′ p′′′)(a + a′)+ pp′(p′′ + p′′′)
− p′′ p′′′(p + p′) = 0, where p, p′, p′′, p′′′ are the roots of R. So

∫

dx√
ϕx

=

−
∫

2b+2b′x
(x−a)(x−a′)

dx√
ϕx

+ A log
P+√

ϕx

P−√
ϕx

, with b = −2
a′√ϕa+a

√
ϕa′

ϕ′a√
ϕa

+ ϕ′a′√
ϕa′

, b′ = 2
√

ϕa+
√

ϕa′

ϕ′a√
ϕa

+ ϕ′a′√
ϕa′

. In

a third case P2 − R = C(x − p)(x − a)(x − a′)2 and P = (x − p)( f + f ′x) and a′

is function of a.

The last case considered by Abel is that in which m = 1. Here P2 − Q2 R =
C(x − a)2n+4 and M

N
= x+k

x−a
with k = −a − µA

√
ϕa. The coefficients of P and Q

are determined by a linear system and then a is given by an algebraic equation; this

leads to

∫

dx

(x − a)
√

R
=

1

µA
√

ϕa

∫

dx
√

R
−

1

µ
√

ϕa
log

P + Q
√

R

P − Q
√

R
.

Abel observes that the equation P2 − Q2 R = C(x − a)2n+4 is equivalent to

P′2−Q′2 R′ = C, where F(x−a) = (x−a)n+2 P′ ( 1
x−a

)

, f(x−a) = (x−a)n Q′ ( 1
x−a

)

and ϕ(x − a) = (x − a)4 R′ ( 1
x−a

)

.

As we know, the same equation is met in the problem to express
∫

(k+x)dx√
R

by

a logarithm A log P+Q
√

R

P−Q
√

R
; here M

N
= x + k, so N is constant and may be taken

as 1. The conditions of the problem are x + k = 2A dP
Qdx

, 1 = P2 − Q2 R; the first

method proposed by Abel to determine P = f + f ′x + . . . + f (n+2)xn+2 and Q =
e + e′x + . . . + e(n)xn is that of indeterminate coefficients. The first condition gives

A = e(n)

(2n+4) f (n+2) , k = f ′e(n)

(n+2)e f (n+2) and the second gives a system of 2n +5 equations

between the 2n + 4 coefficients e(p), f (p): f 2 − αe2 = 1, . . . , f (n+2)2 − εe(n)2 = 0.

The compatibility of this system imposes a relation between the coefficients α, β, γ, δ

and ε of R; for instance, when n = 0, so that Q = e and P = f + f ′x + f ′′x2, one

has

2 f f ′ − βe2 = f ′2 + 2 f f ′′ − γe2 = 2 f ′ f ′′ − δe2 = 0,

whence f ′′ = δ
√

ε√
β2ε−αδ2

, f ′ = δ2

2
√

β2ε2−αεδ2
, f = β

√
ε√

β2ε−αδ2
, e = δ√

β2ε−αδ2
and

γ = δ2

4ε
+ 2βε

δ
, A = 1

4
√

ε
, k = δ

4ε
.
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But it is possible to get a linear system for the coefficients e(p), f (p): if

Fy = fyn+2 + f ′yn+1 + . . . + f (n+2),

fy = eyn + e′yn−1 + . . . + e(n)

and ϕy = αy4 + βy3 + γy2 + δy + ε,

the second condition is (Fy)2 − ( fy)2ϕy = y2n+4 and it gives Fy = fy · √
ϕy

when y = 0. The system is obtained by differentiating 2n + 3 times this relation at

y = 0. When n = 0, one finds f ′′ = ce, f ′ = c′e, f = c′′
2

e, 0 = c′′′, where c(p) =
d p√

ϕy

dy p

∣

∣

y=0 and γ = δ2

4ε
+ 2βε

δ
as above; when n = 1, the system is 0 = 2c′ + c′′ e′

e
,

0 = 4c′′′ + c′′′′ e′
e

, 0 = 5c′′′′ + c′′′′′ e′
e

, whence

c′c′′′′ − 2c′′c′′′ = 2c′c′′′′′ − 5c′′c′′′′ = 0.

Without restricting the generality, we may take ε = 1 and β = −α; the preceding

equations then give δ = 2, γ = −3 and finally

∫

xdx
√

x4 + 2x3 + 3x2 − αx + α
(49)

=
1

6
log

x3 + 3x2 − 2 − α
2

+ (x + 2)
√

x4 + 2x3 − 3x2 − αx + α

x3 + 3x2 − 2 − α
2

− (x + 2)
√

x4 + 2x3 − 3x2 − αx + α
.

Abel proposes another way to study the equation P2 − Q2 R = 1; he writes

it P + 1 = P′2 R′, P − 1 = Q′2 R′′, where P′Q′ = Q and R′ R′′ = R. Then

P = 1
2
(P′2 R′ + Q′2 R′′) and 2 = P′2 R′ − Q′2 R′′; with R′ = x2 + 2qx + p, R′′ =

x2 + 2q′x + p′ and P′, Q′ constant, one finds q = q′, P′ = Q′ =
√

2√
p−p′ , P =

2x2+4qx+p+p′

p−p′ , Q = 2
p−p′ , k = q and A = 1

4
, so

∫

(x + q)dx
√

(x2 + 2qx + p)(x2 + 2qx + p′)

=
1

4
log

2x2 + 4qx + p + p′ + 2
√

R

2x2 + 4qx + p + p′ − 2
√

R
.

With P′ = x+m
c

, Q′ = x+m′
c

, one finds 2q = r + m′ − m, 2q′ = r + m − m′,

p =
1

2
r(3m′ − m) +

1

2
m2 −

1

2
m′2 − mm′,

p′ =
1

2
r(3m − m′) +

1

2
m′2 −

1

2
m2 − mm′,

2c2 =
1

2
r(m′ − m)3 +

1

2
(m − m′)(m3 − m2m′ − m′2m + m′3),

where r = q + q′, and then
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P =
(x2 + 2mx + m2)(x2 + 2qx + p) − c2

c2
,

Q =
x2 + (m + m′)x + mm′

c2
,

k =
1

4
(3r − m′ − m).

If we impose k = 0, r = m+m′
3

, m = 2q′ + q, m′ = 2q + q′, p = −q2 − 2qq′

and p′ = −q′2 − 2qq′; we have

∫

xdx
√

(x2 + 2qx − q2 − 2qq′)(x2 + 2q′x − q′2 − 2qq′)

=
1

4
log

(x+q+2q′)
√

x2+2qx−q2−2qq′+(x+q′+2q)
√

x2+2q′x−q′2−2qq′

(x+q+2q′)
√

x2+2qx−q2−2qq′−(x+q′+2q)
√

x2+2q′x−q′2−2qq′
.

The second method to study the equation P2 − Q2 R = 1 is that used by

Abel in his published memoir for the more general case of hyperelliptic integrals:

putting R = r2 + s, with r of degree 2 and s of degree 1, the equation becomes

P2 − Q2r2 − Q2s = 1 and it shows that P = Qr + Q1 with deg Q1 < deg P.

Then Q2
1 + 2QQ1r − Q2s = 1 or, if r = sv + u, with v of degree 1 and u constant,

Q2
1 +2QQ1u+ Qs(2vQ1− Q) = 1; thus Q2 = Q−2vQ1 if of degree < deg Q = n

and

s1 Q2
1 − 2r1 Q1 Q2 − sQ2

2 = 1,

with s1 = 1 + 4uv, r1 = r − 2u, deg Q1 = n − 1 and deg Q2 = n − 2. Iterat-

ing the process, one gets equations s2α−1 Q2
2α+1 − 2r2α Q2α Q2α+1 − s2α Q2

2α = 1,

s2α′+1 Q2
2α′+1

− 2r2α′+1 Q2α′+1 Q2α′+2 − s2α′ Q2
2α′+2

= 1, with deg Q p = n − p; this

gives sn Q2
n = (−1)n+1, Qn and sn constant. The induction relations to determine

the sm are

sm = sm−2 + 4um−1vm−1, rm = rm−1 − 2um−1 = smvm + um . (50)

A consequence of these relations is that sm−1sm + r2
m = sm−1sm−2 + r2

m−1, so that

this quantity does not depend on m and

sm−1sm + r2
m = ss1 + r2

1 = r2 + s = R; (51)

as sn = µ is constant, it is easy to see that rn−k = rk, sn−k = sk−1µ
(−1)k

, vn−k =
vk−1µ

(−1)k−1
and un−k = −uk−1. For n = 2α+1 and k = α+1, this gives µ = 1 and

uα = 0; for n = 2α, uα−1+uα = 0. The Qm are determined from Qn by the induction

relations Qm = 2vm Qm+1 + Qm+2 and we see that r, 2v, 2v1, . . . , 2vn−1 are the

partial quotients of the continued fraction for P
Q

, which is obtained by truncating

that for
√

R. Putting rm = x2 + ax + bm , sm = cm + pm x, vm = (gm + x) 1
pm

and

qm = b − bm , Abel draws from (50) and (51) the relations
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qm =
1
2

p2 + (ap − 2c)qm−1 − qm−2q2
m−1

q2
m−1

,
cm−1

pm−1

=
c + qm−1qm

p

and pm pm−1 = 2qm;

since um = bm−bm+1

2
= 1

2
(qm+1 − qm) and gm = a − cm

pm
, these relations allow

to determine rm, sm, um and vm if we know the qm , which are determined by an

induction relation starting from q = 0, q1 = 2 bp2−acp+c2

p2 and are rational functions

of a, b, c, p.

Abel applies this method to the elliptic integral
∫

(x+k)dx√
(x2+ax+p)2+px+c

. The condi-

tion sn = constant is equivalent to pn = 0 and it leads to qn = 0 and qn−k = qk. The

coefficient k is equal to 1
n+2

a + 1
n+2

(

c
p

+ c1
p1

+ . . . + cn−1

pn−1

)

and the polynomials P

and Q are determined by the continued fraction. When c = 0, Abel finds the results

published in his 1826 paper, using

q1 = 2b, q2 =
p(p + 4ab)

8b2
,

q3 =
2b(16b3 − p(p + 4ab))

(p + 4ab)2
,

q4 =
4bp(p + 4ab)(p2 + 6abp + 8a2b2 − 8b3)

(16b3 − p(p + 4ab))2
.

From a relation
∫

(y+k′)dy√
R′ = A′ log P′+Q′√R′

P′−Q′
√

R′ , Abel deduces

∫

x + k

x + l

dx
√

R
= A log

P + Q
√

R

P − Q
√

R

through the change of variable y = 1
x+l

; he finds k = l + 1
k′ , A = − A′

k′ and an

algebraic equation to determine l in function of the coefficients of R. Indeed, when

R′ = (y2 + ay + b)2 + c + py and R = (b2 + c)(x4 + δx3 + γx2 + βx + α),

2ab + p = (b2 + c)(δ − 4l), a2 + 2b = (b2 + c)(γ − 3δl + 6l2),

2a = (b2 + c)(β − 2γl + 3δl2 − 4l3)

and 1 = (b2 +c)(α−βl +γl2 −δl3 + l4). From this Abel deduces, with −l instead of

l,
∫

dx

(x−l)
√

R
= − 1

l+k

∫

dx√
R

− 1

(2n+4)
√

α+βl+γl2+δl3+l4
log P+Q

√
R

P−Q
√

R
, which gives a new

proof of (49) when l + k = ∞.

In the third chapter of the Théorie des transcendantes elliptiques, Abel shows

that the periods of an integral of the third kind p =
∫

dx

(x−a)
√

R
are combinations of

the periods of the integrals
∫

dx√
R
,
∫

xdx√
R

and
∫

x2dx√
R

. Taking the integral from a value

x = r which annihilates R = fx, differentiating with respect to a and using (46), he

obtains
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dp

da
+

1

2

f ′a

fa
p =

√
fx

(a − x) fa
+

1

fa

∫

dx
√

fx
(A + Bx + Cx2)

where A = −εa2 − 1
2
δa, B = 1

2
δ and C = ε. From this he deduces

p
√

fa −
√

fx

∫

da

(a − x)
√

fa
=

∫

da
√

fa

∫

dx
√

fx
(A + Bx + Cx2) + constant

and the constant is seen to be 0 by making a = r. Thus

√

fa

∫

dx

(x − a)
√

fx
−

√

fx

∫

da

(a − x)
√

fa

=
∫

da
√

fa

∫

( 1
2
δx + εx2)dx

√
fx

−
∫

dx
√

fx

∫

( 1
2
δa + εa2)da

√
fa

which the formula (42) for the case of elliptic integrals. When r ′ is another root of

fx, one obtains
√

fa
r ′
∫

r

dx

(x−a)
√

fx
=

∫

r

da√
fa

r ′
∫

r

( 1
2 δx+εx2)dx√

fx
−

r ′
∫

r

dx√
fx

∫

r

( 1
2 δa+εa2)da√

fa
. And

if r ′′ is a third root of fx,
r ′′
∫

r

da√
fa

r ′
∫

r

( 1
2 δx+εx2)dx√

fx
=

r ′
∫

r

dx√
fx

r ′′
∫

r

( 1
2 δa+εa2)da√

fa
.

Abel finds new relations between periods starting from

s = A log
P + Q

√
R

P − Q
√

R
+ A′ log

P′ + Q′√R

P′ − Q′
√

R
+ . . .

=
∫

B + Cx
√

R
dx + L

∫

dx

(x − a)
√

R
+ L ′

∫

dx

(x − a′)
√

R
+ . . .

(cf. (48)) which gives, by integrating from r to r ′:

s′ − s =
r ′

∫

r

B + Cx
√

fx
dx

−
r ′

∫

r

dx
√

fx





L
√

fa

∫

r

( 1
2
δa + εa2)da

√
fa

+
L ′

√
fa′

∫

r

( 1
2
δa′ + εa′2)da′

√
fa′ + . . .





+
r ′

∫

r

( 1
2
δx + εx2)dx

√
fx





L
√

fa

∫

r

da
√

fa
+

L ′
√

fa′

∫

r

da′
√

fa′ + . . .





The end of the Théorie des transcencantes elliptiques (p. 173–188) is devoted

to the proof that an integral of the third kind Π(n) =
∫

dx

(1+nx2)
√

(1−x2)(1−c2x2)

may be transformed in a linear combination of the integral of the first kind

F =
∫

dx√
(1−x2)(1−c2x2)

, some logarithms (or arctangents) of algebraic functions



88 C. Houzel

and another integral of the third kind Π(n′) with a parameter n′ arbitrarily large

or arbitrarily close to a certain limit, and more generally to the relations between

integrals of the third kind with different parameters. Let us consider s = arctan
√

R
Q

,

with R = (1 − x2)(1 − c2x2) and Q = x(a + bx2); we have ds = M
N

dx√
R

with

N = Q2 + R and M = 1
2

Q dR
dx

− R dQ
dx

. If we impose that N = k(1+nx2)(1+n1x2)2,

we find that k = 1, b = ±n1

√
n, a = (1 + n1)

√
1 + n ∓ n1

√
n = χ(n) and

n1 = ±(
√

1 + n ±
√

n)(
√

c2 + n ±
√

n) = f(n). Then M
N

= A + L

1+nx2 + L ′

1+n1x2

with A = 2a −
(

1
n

+ 2
n1

)

b, L = n1√
n

− a and L ′ = 2
√

n − 2a. Thus

Π(n) =
√

n

n1 − a
√

n
arctan

√
R

ax + bx3
−

2a
√

n − (2n + n1)

n1a
√

n
F (52)

+
(2a − 2

√
n)

√
n

n1 − a
√

n
Π(n1) + C

= βF + γΠ(n1) + α arctan
ax + bx3

√
R

with α = ±
√

n

n1∓a
√

n
= ϕ(n), β = −±2a

√
n−2n−n1

n1∓a
√

n
= θ(n), γ = ±(2a∓2

√
n)

√
n

n1∓a
√

n
= ψ(n).

It is easy to see that n1 > 4n and that χ is an increasing function when

both upper signs are chosen in f(n). Thus, iterating the operation, we arrive at

a parameter nm as large as we wish, with αm equivalent to 1√
nm

, βm remain-

ing between 0 and 1 and lim βm = 0, lim γm = 4. On the contrary, when both

lower signs are chosen, nm decreases and its limit is the root k of the equation

k = (
√

k + 1 −
√

k)(
√

k + c2 −
√

k). Applying (52) to Π(k), we obtain

Π(k) =
2a + 3

√
k

3(a +
√

k)
F −

1

3(a +
√

k)
arctan

ax − k
3
2 x3

√
R

.

The formulae n1 = −(
√

1 + n +
√

n)(
√

c2 + n −
√

n) and

n1 = −(
√

1 + n −
√

n)(
√

c2 + n +
√

n)

respectively lead to values of nm between −c2 and −c and between −1 and −c. Abel

also studies the case in which n is negative.

The transformed parameter n1 is given by an equation of degree 4; inversely, one

has

n =
(n2

1 − c2)2

4n1(n1 + 1)(n1 + c2)
.

When the sequence (nm) is periodic, the integrals Π(nm) may be expressed as

combinations of F and some arctangents.

Abel finds other relations as

Π(n) = −
m′

µ

ψ(n1)

ψ(n)
Π(n1) −

A

µnn1ψ(n)
F +

1

µψ(n)
arctan

Q
√

R

P
,
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with P, Q polynomials such that

P2 + Q2 R = (1 + nx2)µ(1 + n1x2)µ
′
, ψ(n) =

√

(1 + n)(c2 + n)
√

n
,

A constant and n1 = χ(n) a certain function. When for instance P = 1 + bx2 and

Q = ex, χ(n) = c(c−
√

c2+n)(1−
√

1+n)

n
.

An essential discovery of Abel in the theory of elliptic functions is that these func-

tions, obtained by inverting elliptic integrals, have 2 independent periods in the com-

plex domain. In his posthumous memoir Propriétés remarquables de la fonction y =
ϕx déterminée par l’équation fydy−dx

√
(a − y)(a1 − y)(a2 − y) . . . (am − y) = 0,

fy étant une fonction quelconque de y qui ne devient pas nulle ou infinie lorsque

y = a, a1, a2, . . . , am (Œuvres, t. II, p. 40–42), he shows that the function ϕx,

which is the inverse function of the hyperelliptic integral x =
∫

fydy√
ψy

where

ψy = (a− y)(a1 − y)(a2 − y) . . . (am − y), must have each of the numbers 2(α−αk)

as period, where αk is the values of the integral corresponding to y = ak. Jacobi later

proved (1834) that a regular uniform function of one complex variable cannot have

more than 2 independent periods; thus the inverse function of a hyperelliptic integral

cannot be uniform when m > 4. The inversion problem for hyperelliptic integrals

or more generally for abelian integrals must involve functions of several complex

variable, as Jacobi (1832) discovered through his intertretation of Abel theorem.

Here Abel writes the Taylor series for the function ϕ:

ϕ(x + v) = y + v2 Q2 + v4 Q4 + v6 Q6 + . . . +
√

ψy(vQ1 + v3 Q3 + v5q5 + . . . )

where the Q j do not have poles at the ak. Thus ϕ(α + v) = a + v2 Q2 + v4 Q4 +
v6 Q6 + . . . ϕ(α + v) is an even function of v and ϕ(2α − v) = ϕv. In the same way

ϕ(2α1 − v) = ϕv and ϕ(2α − 2α1 + v) = ϕv and so on.

5 Abel Theorem

The most famous of Abel’s results is a remarkable extension of Euler addition

theorem for elliptic integrals. It is known as Abel theorem and gives the corresponding

property for any integral of an algebraic function; such integrals are now called

abelian integrals. This theorem, sent to the french Academy of Sciences by Abel

in 1826 in a long memoir titled Mémoire sur une propriété générale d’une classe

très-étendue de fonctions transcendantes, is rightly considered as the base of the

following developments in algebraic geometry. Due to the negligence of the french

Academicians, this fundamental memoir was published only in 1841, after the first

edition of Abel’s Work (1839).

In the introduction, Abel gives the following statement:

“When several functions are given of which the derivatives may be roots of the

same algebraic equation, of which all the coefficients are rational functions of the

same variable, one can always express the sum of any number of such functions by



90 C. Houzel

an algebraic and logarithmic function, provided that a certain number of algebraic

relations be prescribed between the variables of the functions in question.”

He adds that the number of relations does not depend on the number of the

functions, but only on their nature. It is 1 for the elliptic integrals, 2 for the functions

of which the derivatives contains only the square root of a polynmial of degree ≤ 6

as irrationality.

A second statement, which is properly Abel theorem says:

“One may always express the sum of a given number of functions, each of

which is multiplied by a rational number, and of which the variable are arbitrary,

by a similar sum of a determined number of functions, of which the variables are

algebraic functions of the variables of the givent functions.”

The proof of the first statement is short (§ 1–3, p. 146–150). Abel considers an

algebraic equation 0 = p0+ p1 y+ p2 y2+. . .+ pn−1 yn−1+yn = χy with coefficients

polynomials in x; this equation is supposed to be irreducible. He introduces another

polynomial

θy = q0 + q1 y + q2 y2 + . . . + qn−1 yn−1

in x, y, certain coefficients a, a′, a′′, . . . of the polynomials q0, q1, . . . , qn−1 being

indeterminates. The resultant r = θy′θy′′ . . . θy(n) of χ and θ, where y′, y′′, . . . , y(n)

are the roots of χy = 0, is a polynomial in x, a, a′, a′′, . . . , which may be decomposed

in r = F0xFx where F0x and Fx are polynomials in x and F0x does not depend

on a, a′, a′′, . . . . Let x1, x2, . . . , xµ be the roots of Fx = 0 and y1, y2, . . . , yµ

the corresponding common roots of the equations χy = 0, θy = 0. The yk are

rational functions of xk, a, a′, a′′, . . . by the theory of elimination. Now let f(x, y)dx

be a differential form, with f a rational function of x, y. When Fx = 0, dx =
− δFx

F′x where F ′x is the derivative with respect to x and δFx the differential with

respect to a, a′, a′′, . . . Thus f(xk, yk)dxk = − f(xk,yk)

F′xk
δFxk is rational with respect

to xk, a, a′, a′′, . . . and dv = f(x1, y1)dx1 + f(x2, y2)dx2 + . . . + f(xµ, yµ)dxµ is

rational with respect to a, a′, a′′, . . . A consequence is that the function

∫

f(x1, y1)dx1 +
∫

f(x2, y2)dx2 + . . . +
∫

f(xµ, yµ)dxµ = v (53)

is an algebraic and logarithmic function of a, a′, a′′, . . . Now if there are α indetermi-

nate coefficients a, a′, a′′, . . . in θy, they may be determined by arbitrarily choosing

α couples (x j, y j) of roots of χy = 0 and writing the equations θy j = 0; the other

yk are then rational functions of xk and the (x j, y j).

Abel gives a cleaver way to do the computation (§ 4, p. 150–159), first writing

δFx = δr
F0x

= rδθy

F0xθy
and

f(x, y)dx

= −
1

F0xF ′x

(

f(x, y′)
r

θy′ δθy′ + f(x, y′′)
r

θy′′ δθy′′ + . . . + f(x, y(n))
r

θy(n)
δθy(n)

)

= −
1

F0xF ′x

∑

f(x, y)
r

θy
δθy
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where the sum is extended to the n roots y′, y′′, . . . , y(n) . Then he writes f(x, y) =
f1(x,y)

f2xχ ′y where f1(x, y) is a polynomial in x, y, of degree ≤ n−1 in y, f2x a polynomial

in x and χ ′y the derivative of χy with respect to y. If f1(x, y) r
θy

δθy = R(1)y + Rx ·
yn−1, with R(1)y polynomial in x, y of degree ≤ n − 2 in y and Rx a polynomial in

x, it is easy to see that

∑ f1(x, y)

χ ′y

r

θy
δθy = Rx. (54)

Thus dv =
∑

f(x, y)dx = −
∑ R1x

f2x·F0x·F′x ; here the sum is extended to the µ roots

xk of Fx = 0. Grouping the roots of F0x and of f2x, we obtain dv = −
∑ R1x

θ1x·F′x
where R1x has no common root either with F0x or with f2x and the roots of

θ1x annihilate F0x or f2x. If R2x is the quotient and R3x the remainder of the

Euclidian division of R1x by θ1x, one computes that
∑ R1x

F′x is the coefficient of
1
x

in the expansion of R1x

θ1x·Fx
in decreasing powers of x; this result comes from

the development of 1
Fα

=
∑

1
α−x

1
F′x in decreasing powers of α. A rather more

complicated computation, based on the decomposition of
R3x

θ1x
in simple elements,

gives
∑ R3x

θ1x·F′x = −
∑ ′ν dν−1

dβν−1

(

R1β

θ
(ν)
1 β·Fβ

)

where the sum of the right hand side is

extended to the roots β of θ1x and, for each β, ν is the multiplicity of β . Unfortunately

this result is incorrect and Sylow corrects it in the notes at the end of the second

volume of Abel’s Works (p. 295–296). The correct result is

∑ R3x

θ1x · F ′x
=

∑

′ 1

Γν

dν−1

dβν−1

(

R1β

ϑβ

∑ 1

(x − β)Fx

)

where ϑx = θ1x

(x−β)ν
. From (54), we draw R1x = F2x · Fx

∑ f1(x,y)

χ ′y
δθy

θy
where F2x =

θ1x

f2x
is a rational function of x independent of a, a′, a′′, . . . as are θ1x, f1(x, y) and

χ ′y. Thus dv = −
∏ F2x

θ1x

∑ f1(x,y)

χ ′y
δθy

θy
+
∑ ′ 1

Γν
dν−1

dxν−1

(

F2x

ϑx

∑ f1(x,y)

χ ′y
δθy

θy

)

where the

symbol
∏

denotes the coefficient of 1
x

in the expansion of the following function in

decreasing powers of x. Now the expression in the right hand side is integrable and

gives

v = C −
∏ F2x

θ1x

∑ f1(x, y)

χ ′y
log θy +

∑

′ 1

Γν

dν−1

dxν−1

(

F2x

ϑx

∑ f1(x, y)

χ ′y
log θy

)

.

(55)

In general F0x = 1 and then F2x = 1, θ1x = f2x. If for example f2x = (x−β)m ,

the formula (55) takes the form

∑

∫

f1(x, y)dx

(x − β)mχ ′y
= C −

∏∑ f1(x, y)

(x − β)mχ ′y
log θy

+
1

1 · 2 · · · (m − 1)

dm−1

dβm−1

(

∑ f1(β, B)

χ ′ B
log θB

)
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where B is the value of y when x = β (the second term disappears if m = 0).

In the fifth paragraph (p. 159–170), Abel studies under which conditions the right

hand side of (54) is a constant independent of a, a′, a′′, . . . He supposes that F0x = 1;

then θ1x = f2x must be constant and
∑

∫

f1(x,y)dx

(x−β)mχ ′y = C −
∏∑ f1(x,y)

χ ′y log θy. In

order that this expression be constant, he finds that the following condition must

be realised: sup
1�k�n

h
f1(x,y(k))

χ ′y(k) < −1 where, for any function R of x, h R denotes the

highest exponent of x in the expansion of R in decreasing powers of x. This condition

is equivalent to h f1(x, y(k)) < hχ ′y(k) − 1 for 1 ≤ k ≤ n and Abel deduces from it

that h(tm y(k)m) < hχ ′y(k) − 1 for 0 ≤ m ≤ n − 1 and 1 ≤ k ≤ n if

f1(x, y) = t0 + t1 y + t2 y2 + . . . + tn−1 yn−1.

A proof of this deduction is given by Sylow in the notes (Œuvres, t. II, p. 296–

297). The condition now takes the form htm < inf
1�k�n

(hχ ′y(k) − mhy(k)) − 1 for

0 ≤ m ≤ n − 1 and 1 ≤ k ≤ n. Abel arranges the y(k) in a way such that

hy′ ≤ hy′′ ≤ . . . ≤ hy(n). Thus, in general h(y(k) − y(ℓ)) = hy(k) for ℓ > k and

hχ ′y(k) = hy′ + hy′′ + . . . + hy(k−1) + (n − k)hy(k). Now one sees that

inf
1�k�n

(hχ ′y(k) − mhy(k)) = hy′ + hy′′ + . . . + hy(n−m−1),

so that htm = hy′ + hy′′ + . . . + hy(n−m−1) − 2 + εn−m−1 with 0 ≤ εn−m−1 < 1.

Let us suppose that

hy( j) =
m(α)

µ(α)
, (56)

an irreducible fraction, for k(α−1) + 1 ≤ j ≤ k(α), 1 ≤ α ≤ ε (here k(0) = 0 and

k(ε) = n). Since k(α) − k(α−1) must be a multiple n(α)µ(α) of µ(α), we have k(α) =
n′µ′ +n′′µ′′ + . . . +n(α)µ(α). If k(α) ≤ n −m −1 < k(α+1) and β = n −m −1−k(α),

htm = n′m′ + n′′m′′ + . . . + n(α)m(α) − 2 +
βm(α+1) + A

(α+1)
β

µ(α+1)
, (57)

where A
(α+1)
β = µ(α+1)εk(α)+β is the remainder of the division of −βm(α+1) by

µ(α+1). For α = 1, this shows that tn−β−1 = 0 unless
βm′+A′

β

µ′ ≥ 2. This inequality

signifies that the quotient of −βm′ by µ′ is ≤ −2 or that µ′

m′ < β ≤ 2 µ′

m′ , the least

possible value of β being β′ = E
(

µ′

m′ + 1
)

(integral part of µ′

m′ + 1). In addition,

one must impose β ≤ n − 1 and β < k′ = n′µ′ (condition neglected by Abel). Now

if β′ > n − 1, µ′

m′ + 1 ≥ n and, since µ′ ≤ n, µ′

m′ is equal to 1
n

or to 1
n−1

, which

imposes to χy to be of degree 1 with respect to x; in this case,
∫

f(x, y)dx =
∫

Rdy

with R rational in y, is algebraic and logarithmic in y. Sylow (Œuvres, t. II, p.

298) observes that the least possible value of β is still β′ in the case in which
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µ′

m′ + 1 ≤ n′µ′, with the only exceptions of χy of degree 1 with respect to x or

χy = y2 + (Ax + B)y + Cx2 + Dx + E; in these cases,
∫

f(x, y)dx may be reduced

to the integral of a rational function and is expressible by algebraic and logarithmic

functions. Finally, the abelian integrals leading to a constant in the right hand side

of (55) are of the form

∫

(t0 + t1 y + . . . + tn−β′−1 yn−β′−1)dx

χ ′y

where the degree htm of each coefficient tm is given by (57). Such a function involves

a number of arbitrary constant equal to γ = ht0 + ht1 + . . . + htn−β′−1 + n − β′ =
ht0 + ht1 + . . . + htn−2 + n − 1. Using (57), Abel transforms this expression into

γ =
A′

0

µ′ +
m′ + A′

1

µ′ +
2m′ + A′

2

µ′ + . . . +
(n′µ′ − 1)m′ + A′

n′µ′−1

µ′

+
A′′

0

µ′′ +
m′′ + A′′

1

µ′′ +
2m′′ + A′′

2

µ′′ + . . . +
(n′′µ′′ − 1)m′′ + A′′

n′′µ′′−1

µ′′

+ n′m′n′′µ′′

+
A′′′

0

µ′′′ +
m′′′ + A′′′

1

µ′′′ +
2m′′′ + A′′′

2

µ′′′ + . . . +
(n′′′µ′′′ − 1)m′′′ + A′′′

n′′′µ′′′−1

µ′′′

+ (n′m′ + n′′m′′)n′′′µ′′′

+ . . . . . . . . . . . . . . . . . . . . . − n + 1.

Since A
(α)
0 + A

(α)
1 + . . .+ A

(α)

n(α)µ(α)−1
= n(α) µ(α)(µ(α)−1)

2
and n = n′µ′ +n′′µ′′ + . . . +

n(ε)µ(ε), this finally gives

γ = n′µ′ m
′n′ − 1

2
+ n′′µ′′

(

m′n′ +
m′′n′′ − 1

2

)

+ n′′′µ′′′
(

m′n′ + m′′n′′ +
m′′′n′′′ − 1

2

)

+ . . .

+ n(ε)µ(ε)

(

m′n′ + m′′n′′ + . . . + m(ε−1)n(ε−1) +
m(ε)n(ε) − 1

2

)

−
n′(m′ + 1)

2
−

n′′(m′′ + 1)

2
− . . . −

n(ε)(m(ε) + 1)

2
+ 1. (58)

Abel indicates some particular cases, first the case in which ε = 1 and

γ = n′µ′ m
′n′ − 1

2
− n′ m

′ + 1

2
+ 1;

more particularly, if in addition µ′ = n, one has n′ = 1 and γ = (n − 1)m′−1
2

. In

the second particular case, µ′ = µ′′ = . . . = µ(ε) = 1 = n′ = n′′ = . . . = n(ε) and

ε = n, thus
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γ = (n − 1)m′ + (n − 2)m′′ + . . . + 2m(n−2) + m(n−1) − n + 1

where m(k) = hy(k) (1 ≤ k ≤ n); when hy(k) = hy′ for 1 ≤ k ≤ n − 1, this gives

γ = (n − 1)

(

nhy′

2
− 1

)

.

Abel finally explains that the result remains true for the integrals of the form
∫

f1(x,y)dx

χ ′y even when F0x is not constant, provided that f1(x,y)

χ ′y be finite whenever x

is replaced by a root β of F0x and y by the corresponding value B. In the final notes

(Œuvres, t. II, p. 298), Sylow says under which precise conditions the number γ

determined by Abel coincides with the genus p later defined by Riemann: the only

multiple points of the curve defined by the equation χy = 0 must be at infinity in the

directions of the axes and no two expansions of the y(k) in decreasing powers of x

may begin by the same term.

As we have said, if there are α indeterminate coefficients a, a′, a′′, . . . in θy, one

may choose arbitrarily α couple (x j, y j) of common roots to χy = 0 and θy = 0

and determine a, a′, a′′, . . . by the linear system θy j = 0, 1 ≤ j ≤ α. If some

couple (x j, y j) has a multiplicity k, one must replace the equation θy j = 0 by

θy j = dθy j

dx j
= . . . = dk−1θy j

dxk−1
j

= 0. We get a, a′, a′′, . . . as rational functions of the

(x j, y j) and we may substitute these functions in Fx. Abel (§ 6–7, p. 170–180) writes

Fx = B(x − x1)(x − x2) . . . (x − xα)F(1)x where F(1)x is a polynomial of degree

µ − α with coefficients rational in the (x j, y j) and ψx =
∫

f(x, y)dx. According to

(53),

ψ1x1 + ψ2x2 + . . . + ψαxα = v − (ψα+1xα+1 + . . . + ψµxµ)

where xα+1, . . . , xµ are the roots of F(1)x = 0, so algebraic functions of x1, . . . , xα,

and v is an algebraic and logarithmic function.

Now α is of the form hq0 + hq1 + . . . + hqn−1 + n − 1 − hF0x + A with

0 ≤ A ≤ hF0x and µ = hr − hF0x = hθy′ + hθy′′ + . . . + hθy(n) − hF0x. Thus

µ − α = hθy′ + hθy′′ + . . . + hθy(n) − (hq0 + hq1 + . . . + hqn−1) − n + 1 − A.

For any m, hθy ≥ h(qm ym) = hqm + mhy and, according to (56),

hθy( j) ≥ hqm + m
m(ℓ)

µ(ℓ)
when k(ℓ−1) + 1 ≤ j ≤ k(ℓ). (59)

Let us suppose that the maximum value of h(qm y( j)m) for n−k(ℓ) ≤ m ≤ n−k(ℓ−1)−1

and k(ℓ−1) + 1 ≤ j ≤ k(ℓ) is obtained for m = ρℓ:

hqρℓ
+ ρℓ

m(ℓ)

µ(ℓ)
≥ hqn−β−1 + (n − β − 1)

m(ℓ)

µ(ℓ)
or

hqρℓ
− hqn−β−1 ≥ (n − β − 1 − ρℓ)

m(ℓ)

µ(ℓ)
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for k(ℓ−1) ≤ β ≤ k(ℓ) −1. Thus hqρℓ
−hqn−β−1 = (n −β −1−ρℓ)

m(ℓ)

µ(ℓ) +ε
(ℓ)
β + A

(ℓ)
β

where ε
(ℓ)
β is a natural integer and 0 ≤ A

(ℓ)
β < 1. The sum of these equations for ℓ

fixed and β variable gives

n(ℓ)µ(ℓ)

(

hqρℓ
+ ρℓ

m(ℓ)

µ(ℓ)

)

=
1

2
(2n − k(ℓ) − k(ℓ−1) − 1)n(ℓ)µ(ℓ) + A

(ℓ)
0 + A

(ℓ)
1 + . . . + A

(ℓ)

n(ℓ)µ(ℓ)−1

+ ε
(ℓ)
0 + ε

(ℓ)
1 + . . . + ε

(ℓ)

n(ℓ)µ(ℓ)−1
+ hqn−1−k(ℓ−1) + . . . + hqn−k(ℓ)

=
1

2
(2n − k(ℓ) − k(ℓ−1) − 1)n(ℓ)µ(ℓ)

+
1

2
n(ℓ)(µ(ℓ) − 1) + Cℓ + hqn−1−k(ℓ−1) + . . . + hqn−k(ℓ)

where Cℓ = ε
(ℓ)
0 + ε

(ℓ)
1 + . . . + ε

(ℓ)

n(ℓ)µ(ℓ)−1
. Let us write the inequalities (59) for

k(ℓ−1) + 1 ≤ j ≤ k(ℓ), m = ρℓ and then sum up all these inequalities for ℓ variable.

This gives

hθy′ + hθy′′ + . . . + hθy(n)

≥ hqn−1 + hqn−2 + . . . + hq0

+
ε

∑

ℓ=1

(

1

2
(2n − k(ℓ) − k(ℓ−1) − 1)n(ℓ)µ(ℓ) +

1

2
n(ℓ)(µ(ℓ) − 1) + Cℓ

)

or hθy′+hθy′′+ . . . +hθy(n)−(hq0 +hq1 + . . . +hqn−1) ≥ γ ′+C1 +C2 + . . . +Cε

where

γ ′ = n′m′
(

n′µ′ − 1

2
+ n′′µ′′ + n′′′µ′′′ + . . . + n(ε)µ(ε)

)

+ n′ µ
′ − 1

2

+ n′′m′′
(

n′′µ′′ − 1

2
+ n′′′µ′′′ + n′′′′µ′′′′ + . . . + n(ε)µ(ε)

)

+ n′′ µ
′′ − 1

2

+ . . .

+ n(ε−1)m(ε−1)

(

n(ε−1)µ(ε−1) − 1

2
+ n(ε)µ(ε)

)

+ n(ε−1) µ
(ε−1) − 1

2

+ n(ε)m(ε) n(ε)µ(ε) − 1

2
+ n(ε) µ

(ε) − 1

2
.

We finally obtain µ − α ≥ γ ′ − n + 1 − A + C1 + C2 + . . . + Cε and we remark

that, according to (58),

γ ′ − n + 1 = γ,

so that µ − α ≥ γ − A + C1 + C2 + . . . + Cε.

As Abel notes it, µ −α = γ − A when C1 + C2 + . . . + Cε = 0 and, for each ℓ,



96 C. Houzel

hθyk(ℓ) = hqρℓ
+ ρℓ

m(ℓ)

µ(ℓ)
. (60)

He shows that, for a convenient choice of θy, these conditions are realised. The first

one signifies that ε
(ℓ)
β = 0 for k(ℓ−1) ≤ β ≤ k(ℓ) − 1 and 1 ≤ ℓ ≤ ε or that

hqn−β−1 = hqρℓ
− (n − β − 1 − ρℓ)

m(ℓ)

µ(ℓ)
− A

(ℓ)
β (61)

for k(ℓ−1) ≤ β ≤ k(ℓ) − 1. The degrees hqm will then be definite if we know the hqρℓ

and we have by (60),

hqρℓ
+ ρℓ

m(ℓ)

µ(ℓ)
≥ hqρα + ρα

m(ℓ)

µ(ℓ)
(62)

for any ℓ and any α. Abel puts m(ℓ)

µ(ℓ) = σℓ and deduces from the preceding inequality

(ρℓ−1 − ρℓ)σℓ ≤ hqρℓ
− hqρℓ−1

≤ (ρℓ−1 − ρℓ)σℓ−1.

Thus hqρℓ
− hqρℓ−1

= (ρℓ−1 − ρℓ)(θℓ−1σℓ−1 + (1 − θℓ−1)σℓ) where 0 ≤ θℓ−1 ≤ 1,

and hqρℓ
= hqρ1

+ (ρ1 − ρ2)(θ1σ1 + (1 − θ1)σ2) + (ρ2 − ρ3)(θ2σ2 + (1 − θ2)σ3) +
. . . + (ρℓ−1 − ρℓ)(θℓ−1σℓ−1 + (1 − θℓ−1)σℓ). Inversely, for any choice of hqρ1

and

of the θα (between 0 and 1), these values of hqρℓ
verify the inequalities (62). It is

then possible, using (61) and some work, to prove that (60) is verified; a narrower

limitation is imposed to the θα.

All this discussion was made in the hypothesis that the only condition limiting

the indetermination of the coefficients of the qm was that the polynomial F0x divides

the resultant r. When more conditions are imposed to limit the number α of the

indeterminate coefficients a, a′, a′′, . . . , the minimum value of µ − α may be of the

form γ −A−B < γ −A. In the final notes (Œuvres, t. II, p. 299–300), Sylow explains

that A is the reduction due to the presence of singularities at a finite distance on the

curve χy = 0 and that the additional reduction B is due to the eventual coincidence

of the initial terms in some of the y(k). Moreover he explains how Abel’s formula

(58) may lead to a computation of A.

In the following paragraph 8 (p. 181–185), Abel explicitly deals with the case

where χy is of degree n = 13 in y, the degrees in x of the coefficients pm being

2 for m = 0, 2, 8; 3 for m = 1, 3, 6, 9; 4 for m = 4, 7, 10; 5 for m = 5 and

1 for m = 11, 12. He determines the exponents hy(k) by a method similar to

that of the Newton polygon and finds hy′ = hy′′ = hy′′′ = m′
µ′ = 4

3
, n′ = 1;

hy(4) = hy(5) = hy(6) = hy(7) = hy(8) = m′′
µ′′ = 1

5
, n′′ = 1; hy(9) = hy(10) =

hy(11) = hy(12) = m′′′
µ′′′ = −1

2
, n′′′ = 2; hy(13) = m′′′′

µ′′′′ = −1, n′′′′ = 1. These values

give γ = 38 and the limitations 10 ≤ ρ1 ≤ 12, 5 ≤ ρ2 ≤ 9, 1 ≤ ρ3 ≤ 4 and ρ4 = 0.

Choosing for instance ρ1 = 11, ρ2 = 6, ρ3 = 4, he finds A′
0 = 2

3
, A′

2 = 1
3
, A′′

3 = 2
5
,

A′′
4 = 3

5
, A′′

5 = 4
5
, A′′

7 = 1
5
, A′′′

9 = 1
2
, A′′′

10 = 0, A′′′
11 = 1

2
and then 12

85
≤ θ1 ≤ 8

17
,

5
14

≤ θ2 ≤ 1 and 1
2

≤ θ3 ≤ 1. The values of the differences
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hq6 − hq11, hq4 − hq6, hq0 − hq4

are correspondingly limited and they may be: hq6 − hq11 = 2, 3; hq4 − hq6 = 0;

hq0 − hq4 = −3,−2. It is now possible to determine all the degrees hqm knowing

θ = hq12. The possible values of α are 13θ + 47, 13θ + 48, 13θ + 57 or 13θ + 58.

The corresponding values of µ are 13θ +85, 13θ +86, 13θ +95 and 13θ +96. Thus

µ − α = 38 = γ for every choice.

Then (§ 9, p. 185–188) Abel extends his relation (53) in the form

h1ψ1x1 + h2ψ2x2 + . . . + hαψαxα = v

where the coefficients h1, h2, . . . , hα are rational numbers. In the paragraph 10

(p. 188–211), he deals with the case in which χy = yn + p0 where p0 is a polynomial

in x and the integral ψx =
∫

f3x·dx

ym f2x
where f2x and f3x are polynomials in x.

If −p0 = r
µ1
1 r

µ2
2 . . . rµε

ε where the polynomials r1, r2, . . . , rε are squarefree and

relatively prime by pairs, let us put with Abel R = r
µ1
n

1 r
µ2
n

2 . . . r
µε
n

ε , so that the

determinations of y are y(k) = ωk−1 R(1 ≤ k ≤ n), ω being a primitive n-th root of

1. The determinations of the integral ψx are of the form ω−em
∫

f3x·dx

Rm f2x
where e is an

integer and (53) takes the form

ω−e1mψx1 + ω−e2mψx2+ . . . + ω−eµmψxµ

= C −
∏ ϕ2x

f2x
+

∑

′ 1

Γν

dν−1

dxν−1

(

F2x · ϕ2x

ϑx

)

(63)

where

ϕ2x =
f3x

Rm
(log θR + ω−m log θ(ωR) + ω−2m log θ(ω2 R)

+ . . . + ω−(n−1)m log θ(ωn−1 R)). (64)

Let us first suppose that all the coefficients in q0, q1, . . . , qn−1 are indeterminate,

so that α = hq0 + hq1 + . . . + hqn−1 + n − 1. In our case, hy′ = hy′′ = . . . =
hy(n) = m′

µ′ . We have ε = 1 and n = n′µ′ = k′. Let us determine the minimum value

of µ − α. According to the relation (61),

hqm = hqρ1
+ (ρ1 − m)

m′

µ′ − A′
m (65)

with 0 ≤ A′
m < 1. Here the number µ is

hr = nhqρ1
+ n′m′ρ1 (66)

and, according to (58), µ−α = γ = n′µ′ n′m′−1
2

−n′ m′+1
2

+1 = n−1
2

nh R− n+n′
2

+1.

But this value can be lowered by a more convenient choice of θy. For 1 ≤ m ≤ ε

and 0 ≤ π ≤ n − 1, Abel puts θm = E µm

n
+ E 2µm

n
+ . . . + E (n−1)µm

n
and

δm,π = θm − E
(

πµm

n
− αm

n

)

where E denotes the integral part of the following
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fraction and the αm are natural integers. He takes the coefficients qπ of θy of the

form qπ = vπr
δ1,π

1 r
δ2,π

2 . . . r
δε,π
ε where the vπ are polynomials in x. Then qπ Rπ =

vπr
θ1+ α1

n
1 r

θ2+ α2
n

2 . . . r
θε+ αε

n
ε R(π) where R(π) = r

k1,π

1 r
k2,π

2 . . . r
kε,π
ε , km,π = ε

πµm−αm

n

(ε denotes the excess of the following fraction over its integral part), and

θy(e+1) = θ ′(x, e)r
θ1+ α1

n
1 r

θ2+ α2
n

2 . . . r
θε+ αε

n
ε

where θ ′(x, e)=v0 R(0)+ωev1 R(1)+ω2ev2 R(2)+. . .+ω(n−1)evn−1 R(n−1), 0≤e≤n−1.

This gives F0x =r
nθ1+α1
1 r

nθ2+α2
2 . . . rnθε+αε

ε and Fx =θ ′(x, 0)θ ′(x, 1) . . . θ ′(x, n − 1).

Now (54) takes the form Rx =
∑ f3x

ym
r·δθy

θy
= F0x

∑ f3x

y(e+1)m
Fx·δθ ′(x,e)

θ ′(x,e)
and

f3x

ym = fx

sm

where

fx = f3x · r
−E

mµ1
n

1 r
−E

mµ2
n

2 . . . r
−E

mµε
n

ε and sm = r
ε

mµ1
n

1 r
ε

mµ2
n

2 . . . r
ε

mµε
n

ε .

Thus

Rx =
F0x · fx

sm

(

Fx

θ ′(x, 0)
δθ ′(x, 0) + ω−m Fx

θ ′(x, 1)
δθ ′(x, 1)

+ ω−2m Fx

θ ′(x, 2)
δθ(x, 2) + . . .

+ ω−(n−1)m Fx

θ ′(x, n − 1)
δθ ′(x, n − 1)

)

.

Since the Fx
θ ′(x,e)

δθ ′(x, e) are polynomial in x, R(0), R(1), . . . , R(n−1), so linear com-

binations of the sm with coefficients polynomial in x, it results that F0x divides Rx:

Rx = F0x · R1x. Now one sees that F2x = 1, θ1x = f2x and that (64) takes the form

ϕ2x =
fx

sm

(log θ ′(x, 0) + ω−m log θ ′(x, 1) + ω−2m log θ ′(x, 2)

+ . . . + ω−(n−1)m log θ ′(x, n − 1)).

Here

µ = hr − hF0x

= nhqρ1
+ n′m′ρ1 − ((nθ1 + α1)hr1 + (nθ2 + α2)hr2 + . . . + (nθε + αε)hrε)

where n′m′ = nh R = µ1hr1 + µ2hr2 + . . . + µεhrε . Thus, putting ρ for ρ1 ,

µ = nhqρ + (µ1ρ − nθ1 − α1)hr1 + (µ2ρ − nθ2 − α2)hr2

+ . . . + (µερ − nθε − αε)hrε

= nhvρ + (nδ1,ρ − nθ1 + ρµ1 − α1)hr1 + (nδysρ − nθ2 + ρµ2 − α2)hr2

+ . . . + (nδε,ρ − nθε + ρµε − αε)hrε

= nhvρ + nε
ρµ1 − α1

n
hr1 + nε

ρµ2 − α2

n
hr2 + . . . + nε

ρµε − αε

n
hrε.
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On the other hand

α = hv0 + hv1 + . . . + vn−1 + n − 1

= hq0 + hq1 + . . . + qn−1 + n − 1 −
∑

m

(δm,0 + δm,1 + . . . + δm,n−1)hrm

= n

(

hvρ +
∑

m

δm,ρhrm

)

+
(

nρ −
n(n − 1)

2

)

m′

µ′

−
n′(µ′ − 1)

2
−

∑

m

(δm,0 + δm,1 + . . . + δm,n−1)hrm .

Abel computes δm,0 + δm,1 + . . . + δm,n−1 = αm + (n − 1)θm and finally gets

α = nhvρ +
(

nε
ρµ1 − α1

n
−

n − k1

2

)

hr1 +
(

nε
ρµ2 − α2

n
−

n − k2

2

)

hr2

+ . . . +
(

nε
ρµε − αε

n
−

n − kε

2

)

hrε − 1 +
n + n′

2

where km is the g.c.d. of µm and n . This gives

µ − α =
n − k1

2
hr1 +

n − k2

2
hr2 + . . . +

n − kε

2
hrε + 1 −

n + n′

2
= θ (67)

independent of ρ, α1, α2, . . . , αε and we have µ = nhvρ + nh R(ρ) (cf. (66)). The

degrees hvm are determined from hqm = δ1,mhr1 + δ2,mhr2 + . . . + δε,mhrε + vm

and (65) which give

hqm = hvρ + (ρ − m)
m′

µ′ + (δ1,ρ − δ1,m)hr1 + (δ2,ρ − δ2,m)hr2

+ . . . + (δε,ρ − δε,m)hrε − A′
m

= hvρ + E((k1,ρ − k1,m)hr1 + (k2,ρ − k2,m)hr2

+ . . . + (kε,ρ − kε,m)hrε)

= hvρ + Eh
R(ρ)

R(m)
. (68)

Abel adopts new notations: xα+1 = z1 , xα+2 = z2, . . . , xµ = zθ ; eα+1 = ε1, eα+2 =
ε2, . . . , eµ = εµ; ω−eµ = ωµ and ω−εµ = πµ and he rewrites (63) in the form

ωm
1 ψx1 + ωm

2 ψx2 + . . . + ωm
α ψxα + πm

1 ψz1 + πm
2 ψz2 + . . . + πm

θ ψzθ (69)

= C −
∏ fxϕx

sm(x) f2x
+

∑′ 1

Γν

dν−1

dxν−1

(

fx · ϕx

sm(x)ϑx

)

where θ1(x) = f2x = A(x − β1)
ν1(x − β2)

ν2 . . . , fx is an arbitrary polynomial,

ϕx = log θ ′(x, 0) + ω−m log θ ′(x, 1) + ω−2m log θ ′(x, 2)

+ . . . + ω−(n−1)m log θ ′(x, n − 1)
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and ψx =
∫

fxdx

f2x·sm (x)
. Here, x1, x2, . . . , xα are considered as independent variables

and z1, z2, . . . , zθ are the roots of the equation θ ′(z,0)θ ′(z,1)...θ ′(z,n−1)

(z−x1)(z−x2)...(z−xα)
= 0. The

coefficients a, a′, a′′, . . . are determined by the equations θ ′(x1, e1) = θ ′(x2, e2) =
. . . = θ ′(xα, eα) = 0 and the numbers ε1, ε2, . . . , εθ by θ ′(z1, ε1) = θ ′(z2, ε2) =
. . . = θ ′(zθ, εθ) = 0.

Some particular cases are explicited by Abel, first the case in which f2x =
(x − β)ν with, for instance, ν = 1 or 0. In this last case the right hand side of (69)

reduces to

C −
∏ fx · ϕx

sm(x) f2x

which is constant when h fx ≤ −E(−hsm(x)) − 2.

When n = 1, there is only one sm = s0 = 1 and ψx =
∫

fx·dx

f2x
. Then R(0) = 1,

θ ′(x, 0) = v0 and ϕx = log v0. The relation (68) takes the form

ψx1 + ψx2 + . . . + ψxα + ψz1 + ψz2 + . . . + ψzθ

= C −
∏ fx

f2x
log v0 +

∑′ 1

Γν

dν−1

dxν−1

(

fx

ϑx
log ν0

)

where v0(x) = a(x − x1)(x − x2) . . . (x − xα)(x − z1)(x − z2) . . . (x − zθ), but it

is possible to make θ = 0 in (67). For α = 1, one finds the known integration of

rational differential forms.

When n = 2 and R = r
1
2
1 r

1
2
2 , take α1 = 1 and α2 = 0. Then s0 = 1, s1 = (r1r2)

1
2 ,

R(0) = r
1
2
1 , R(1) = r

1
2
2 , θ ′(x, 0) = v0r

1
2
1 +v1r

1
2
2 , θ ′(x, 1) = v0r

1
2
1 −v1r

1
2
2 and ω = −1.

For m = 1, we find ϕx = log
v0r

1
2

1 +v1r
1
2

2

v0r
1
2

1 −v1r
1
2

2

and, writing ϕ0x and ϕ1x respectively for

r1 and r2, (69) takes the form

∑

ωψx +
∑

πψz = C−
∏ fx

f2x
√

ϕ0xϕ1x
log

v0
√

ϕ0x + v1
√

ϕ1x

v0
√

ϕ0x − v1
√

ϕ1x

+
∑′ 1

Γν

dν−1

dxν−1

fx

ϑx
√

ϕ0xϕ1x
log

v0
√

ϕ0x + v1
√

ϕ1x

v0
√

ϕ0x − v1
√

ϕ1x

where ψx =
∫

fx·dx

f2x
√

ϕ0xϕ1x
, v0 and v1 are determined by the equations v0

√
ϕ0x1 +

ω1v1
√

ϕ1x1 = v0
√

ϕ0x2 + ω2v1
√

ϕ1x2 = . . . = 0 and z1, z2, . . . , zθ by
(v0(z))2ϕ0x−(v1(z))2ϕ1x

(z−x1)(z−x2)...(z−xα)
= 0. The signs πk are given by πk = − v0(zk)

√
ϕ0zk

v1(zk)
√

ϕ1zk
. We have

k1 = k2 = 1, θ = 1
2
hr1 + 1

2
hr2 − n′

2
= 1

2
(h(r1r2) − n′) where n′ is the g.c.d. of 2

and h(r1r2). Thus θ = m − 1 for h(ϕ0xϕ1x) = 2m − 1 or 2m. Taking ρ = 1, we

have by (68)

hv0 = v1 + E
1

2
(hϕ1x − hϕ0x) =

{

hv1 + 1
2
(hϕ1x − hϕ0x) − 1

2

hv1 + 1
2
(hϕ1x − hϕ0x)
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depending on whether h(ϕ0x · ϕ1x) is odd or even. When m = 1, θ = 0 and

ψx =
∫

fx·dx

f2x
√

R
where R is a polynomial of degree 1 or 2. This integral is an algebraic

and logarithmic function and Abel explicits the computation, taking ϕ0x = ε0x +δ0,

ϕ1x = ε1x + δ1, f2x = (x − β)ν, v1 = 1 and v0 = a. When m = 2, θ = 1 and

h(ϕ0x ·ϕ1x) = 3 or 4 so that ψx is an elliptic integral. The relation (69) takes the form

ω1ψx1+ω2ψx2+. . .+ωαψxα = v−π1ψz1 where v is algebraic and logarithmic. The

product of the roots of the polynomial (v0z)2ϕ0z − (v1z)2ϕ1z = A + . . . + Bzα+1

is x1x2 . . . xαz1, whence z1 = A
B

(−1)α+1

x1x2...xα
, where A

B
is a rational function of x1,

x2, . . . , xα,
√

ϕ0x1,
√

ϕ0x2, . . . ,
√

ϕ0xα,
√

ϕ1x1,
√

ϕ1x2, . . . ,
√

ϕ1xα. When

ϕ0x = 1, ϕ1x = α0 + α1x + α2x2 + α3x3, v1 = 1 and v0 = a0 + a1x,

we must write v0x1 = −ω1
√

ϕ1x1, v0x2 = −ω2
√

ϕ1x2, whence

a0 =
ω1x2

√
ϕ1x1 − ω2x1

√
ϕ1x2

x1 − x2

, a1 =
ω2

√
ϕ1x2 − ω1

√
ϕ1x1

x1 − x2

.

Then A = a2
0−α0, B = −α3 and z1 = 1

α3x1x2

(

x2
2ϕ1x1+x2

1ϕ1x2−2ω1ω2x1x2
√

ϕ1x1ϕ1x2

(x1−x2)2 − α0

)

which gives the addition theorem for elliptic integrals.

When m = 3, θ = 2 and h(ϕ0x · ϕ1x) = 5 or 6. Abel explains certain particular

cases, for instance that in which ψx =
∫

(A0+A1x)dx√
α0+α1x+...+α6x6

, which gives

±ψx1 ± ψx2 ± . . . ± ψxα = ±ψz1 ± ψz2 + C,

where z1, z2 are the roots of a quadratic equation with coefficients rational in x1,

x2, . . . , xα,
√

R1,
√

R2, . . . ,
√

Rα (where Rk is the value of R corresponding to

x = xk). As we have said in our §1, Abel explained this result, with α = 3, in a letter

to Crelle.

The last example dealt with by Abel is not hyperelliptic for he takes n = 3,

R = r
1
3
1 r

2
3
2 , α1 = α2 = 0. Then s0 = 1, s1 = r

1
3
1 r

2
3
2 , s2 = r

2
3
1 r

1
3
2 , R(0) = s0, R(1) = s1,

R(2) = s2 and

θ ′(x, 0) = v0 + v1r
1
3
1 r

2
3
2 + v2r

2
3
1 r

1
3
2 , θ ′(x, 1) = v0 + ωv1r

1
3
1 r

2
3
2 + ω2v2r

2
3
1 r

1
3
2 ,

θ ′(x, 2) = v0 + ω2v1r
1
3
1 r

2
3
2 + ωv2r

2
3
1 r

1
3
2 ,

which give Fx = θ ′(x, 0)θ ′(x, 1)θ ′(x, 2) = v3
0 + v3

1r1r2
2 + v3

2r2
1r2 − 3v0v1v2r1r2.

Here

θ = hr1 + hr2 + 1 −
3 + n′

2

where n′ is the g.c.d. of 3 and r1 + 2hr2. Thus θ = h(ϕ0xϕ1x) − 2 if hr1 + 2hr2 is

divisible by 3 and θ = h(ϕ0xϕ1x) − 1 in the contrary case.

Since the french Academy did not give any news of his memoir, Abel decided

to published his theorem for the particular case of hyperelliptic integrals in Crelle’s
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Journal (vol. 3, 1828, Œuvres, t. I, p. 444–456). It is this publication which inspired

Jacobi for the formulation of the inversion problem (1832). In a letter to Legendre

(14 March 1829), Jacobi said of Abel theorem that it was “perhaps the most impor-

tant discovery of what the century in which we live has made in mathematics . . .

though only a work to come, in a may be distant future, may throw light on its full

importance”. The statement is the following: “Let ϕx be a polynomial in x, decom-

posed in two factors ϕ1x, ϕ2x and let fx be another polynomial and ψx =
∫

fx·dx

(x−α)
√

ϕx

where α is an any constant quantity. Let us designate by a0, a1, a2, . . . , c0, c1, c2, . . .

arbitrary quantities of which at least one is variable. Then if one puts

(a0 + a1x + . . . + an xn)2ϕ1x − (c0 + c1x + . . . + cm xm)2ϕ2x

= A(x − x1)(x − x2) . . . (x − xµ)

where A does not depend on x, I say that

ε1ψx1 + ε2ψx2 + . . . + εµψxµ

= −
fα

√
ϕα

log
(a0 + a1α + . . . + anα

n)
√

ϕ1α + (c0 + c1α + . . . + cmαm)
√

ϕ2α

(a0 + a1α + . . . + anαn)
√

ϕ1α − (c0 + c1α + . . . + cmαm)
√

ϕ2α

+ r + C

where C is a constant quantity and r the coefficient of 1
x

in the expansion of

fx

(x − α)
√

ϕx
log

(a0 + a1x + . . . + an xn)
√

ϕ1x + (c0 + c1x + . . . + cm xm)
√

ϕ2x

(a0 + a1x + . . . + an xn)
√

ϕ1x − (c0 + c1x + . . . + cm xm)
√

ϕ2x

in decreasing powers of x. The quantities ε1, ε2, . . . , εµ are equal to +1 or to −1

and their values depend on those of the quantities x1, x2, . . . , xµ.”

Putting θx = a0 + a1x + . . . + an xn , θ1x = c0 + c1x + . . . + cm xm and Fx =
(θx)2ϕ1x − (θ1x)2ϕ2x, the quantities x1, x2, . . . , xµ are the roots of Fx = 0. We

have F ′xdx + δFx = 0 where

δFx = 2θx · ϕ1x · δθx − 2θ1x · ϕ2x · δθ1x.

Now the equation Fx = 0 implies that θx ·ϕ1x = εθ1x
√

ϕx and θ1x ·ϕ2x = εθx
√

ϕx

where ε = ±1 . Thus F ′xdx = 2ε(θx · δθ1x − θ1x · δθx)
√

ϕx and ε
fxdx

(x−α)
√

ϕx
=

2 fx(θx·δθ1x−θ1x·δθx)

(x−α)F′x = λx
(x−α)F′x where λx = (x −α)λ1x +λα and λ1x are polynomials.

This leads to

∑

ε
fx · dx

(x − α)
√

ϕx
=

∑ λ1x

F ′x
+ λα

∑ 1

(x − α)F ′x
= −

λα

Fα
+

∏ λx

(x − α)Fx

(the sums are extended to x1, x2, . . . , xµ) and then to the relation of the statement.

The values of the εk are determined by the equations θxk
√

ϕ1xk = εkθ1xk
√

ϕ2xk.

In a second theorem, Abel explains that the same statement holds in the case in

which some of the roots of Fx are multiple, provided that θx · ϕ1x and θ1x · ϕ2x
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be relatively prime. The third theorem concerns the case in which fα = 0, so that

ψx =
∫

fx·dx√
ϕx

where fx is a polynomial (written for fx

x−α
). In this case, the right hand

side of the relation reduces to

C +
∏ fx

√
ϕx

log
θx

√
ϕ1x + θ1x

√
ϕ2x

θx
√

ϕ1x − θ1x
√

ϕ2x
.

On the contrary (theorem IV), when the degree of ( fx)2 is less than the degree of

ϕx, the right hand side reduces to C − fα√
ϕα

log
θα

√
ϕ1α+θ1α

√
ϕ2α

θα
√

ϕ1α−θ1α
√

ϕ2α
. Abel deals with the

case of the integrals ψx =
∫

dx

(x−α)k√ϕx
by successive differentiations starting from

k = 1 (theorem V).

The sixth theorem concerns the case in which deg( fx)2 < deg ϕx, that is of

integrals of the form ψx =
∫ (δ0+δ1x+...+δν′ xν′

)dx√
β0+β1x+...+βνxν where ν′ = ν−1

2
− 1 when ν is odd

and ν′ = ν
2

− 2 when ν is even or ν′ = m − 2 for ν = 2m − 1 or 2m. In this case,

the right hand side of the relation is a constant.

The general case of ψx =
∫

rdx√
ϕx

where r is any rational function of x is reduced to

the preceding ones by decomposing r in simple elements (theorem VII). As there are

m +n +2 indeterminate coefficients a0, a1, . . . , c0, c1, . . . , Abel arbitrarily chooses

µ′ = m + n + 1 quantities x1, x2, . . . , xµ′ and determines a0, a1, . . . , c0, c1, . . .

as rational functions of x1, x2, . . . , xµ′,
√

ϕx1,
√

ϕx2, . . . ,
√

ϕxµ′ by the equations

θxk
√

ϕ1xk = εkθ1xk
√

ϕ2xk, 1 ≤ k ≤ µ′. Substituting these values in θx and θ1x, Fx

takes the form (x−x1)(x−x2) . . . (x−xµ′)R where R is a polynomial of degree µ−µ′

with the roots xµ′+1, xµ′+2, . . . , xµ. The coefficients of R are rational functions of

x1, x2, . . . , xµ′,
√

ϕx1,
√

ϕx2, . . . ,
√

ϕxµ′ . Putting ε1 = ε2 = . . . = εµ1
= 1,

εµ1+1 = εµ1+2 = . . . = εµ′ = −1, xµ1+1 = x′
1, xµ1+2 = x′

2, . . . , xµ’ = x′
µ2

and

xµ′+1 = y1, xµ′+2 = y2, . . . , xµ = yν′ , Abel rewrites the relation of the statement

in the form ψx1 + ψx2 + . . . + ψxµ1
− ψx′

1 − ψx′
2 − . . . − ψx′

µ2
= v − εµ′+1ψy1 −

εµ’+2ψy2 − . . . − εµψyν′ , where x1, x2, . . . , xµ1
, x′

1, x′
2, . . . , x′

µ2
are independent

variables and y1, y2, . . . , yν′ algebraic functions of these variables. He determines the

minimum value of ν′ = µ−µ′ = µ−m −n −1, where µ = sup(2n +ν1, 2m +ν2),

ν1 and ν2 denoting the respective degrees of ϕ1x and ϕ2x. The mean value of

2n + ν1 and 2m + ν2 is m + n + ν1+ν2
2

. Thus ν′ ≥ ν1+ν2
2

− 1 = ν
2

− 1 where

ν is the degree of ϕ, and this minimum value, which is the same as that of the

theorem VI is attained (theorem VIII). The signs ε j are determined by the equations

θy j
√

ϕ1 y j = −ε jθ1 y j
√

ϕ2 y j, 1 ≤ j ≤ ν′. Naturally, when some of the xk or of the x′
k

are equal, one must replace the corresponding equation θxk
√

ϕ1xk = εkθ1xk
√

ϕ2xk

by a certain number of derivatives of this equation.

The memoir X (Œuvres, t. II, p. 55–66), unpublished by Abel, Sur la comparaison

des transcendantes, gives a testimony of an early form of Abel theorem. It begins

by the same demonstration as in the large memoir for the french Academy, to reach

a relation of the form

ψx1 + ψx2 + . . . + ψxµ = C + ρ − (ψz1 + ψz2 + . . . + ψzν) (70)
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where ψx =
∫

f(x, y)dx, y being an algebraic function of x and f(x, y) a rational

function of x and y. Here z1, z2, . . . , zν are algebraic functions of x1, x2, . . . , xµ, C

is a constant and ρ is a function algebraic and logarithmic of x1, x2, . . . , xµ. Abel

proposes a method to compute C in the hypothesis in which µ > ν; we shall see

examples of it later.

In the following, he applies his theorem to the particular case in which y is

a rational function of x, defined by the equation α + α1 y = 0 where α, α1 are

polynomials in x. Then the auxiliary equation θy = 0 is of degree 0 in y, of the form

0 = q = a + a1x + . . . + an−1xn−1 + xn = s and ydx = da+xda1+xn−1dan−1
ds
dx

α
α1

. The n

quantities a, a1, . . . , an−1 are determined in function of the n independent variables

x1, x2, . . . , xn by writing that these variables are roots of the equation s = 0, and

ν = 0. When y = xm , ψx = xm+1

m+1
and the theorem states that

1

m + 1
(xm+1

1 + xm+1
2 + . . .+ xm+1

n ) = −
∫

(Pmda+ Pm+1da1 + . . .+ Pm+n−1dan−1)

where Pk = xk
1

ds1
dx1

+ xk
2

ds2
dx2

+ . . .+ xk
n

dsn
dxn

. Now the left hand side is a polynomial 1
m+1

Qm+1

in a, a1, . . . , an−1 and we thus have Pm+k = − 1
m+1

∂Qm+1

∂ak
. In particular Pk = − ∂Q1

∂ak

where Q1 = −an−1 and this gives

P0 = P1 = . . . = Pn−2 = 0, Pn−1 = 1, (71)

identities used several times by Abel. In the same manner, when y = 1
(x−α)m ,

ψx = −
1

m − 1

1

(x − α)m−1

and

1

m − 1

(

1

(x1 − α)m−1
+

1

(x2 − α)m−1
+ . . . +

1

(xn − α)m−1

)

=
∫

(P(0)
m da + P(1)

m da1 + . . . + P(n−1)
m dan−1)

where P(k)
m = xk

1

(x1−α)m ds1
dx1

+ xk
2

(x2−α)m ds2
dx2

+ . . . + xk
n

(xn−α)m dsn
dxn

. Thus we have

P(k)
m =

1

m − 1

∂Q′
m−1

∂ak

where

Q′
m−1 =

1

(x1 − α)m−1
+

1

(x2 − α)m−1
+ . . . +

1

(xn − α)m−1
.

When m = 1, ψx = log(x − α) and the left hand side of (70) is

log(x1 − α)(x2 − α) . . . (xn − α) = log(−1)n(a + a1α + . . . + an−1α
n−1 + αn).
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Thus P
(k)
1 = − αk

a+a1α+...+an−1αn−1+αn .

Now supposing that s = (a + a1x + . . . + xµ−1xµ−1 + xµ)ϕx − fx where

ϕx = α1 and fx = −(δ + δ1x + . . . + δn−1xn−1),

we have ydx = α(da+xda1+...+xµ−1daµ−1)

ds
dx

and we see that ρ = 0 in (70) if deg α <

deg α1. The quantities x1, x2, . . . , xn are related by the equations a + a1xk + . . . +
aµ−1x

µ−1
k +x

µ

k = fxk

ϕxk
, 1 ≤ k ≤ n. Let x′

1, x′
2, . . . , x′

n be another set of quantitites and

suppose that deg α < deg α1; we have ψx1+ψx2+. . .+ψxn = ψx′
1+ψx′

2+. . .+ψx′
n .

Now it is possible, by a convenient choice of δ, δ1, . . . , δn−1, to impose ψx′
n =

ψx′
n−1 = . . . = ψx′

µ+1 = 0. Thus the theorem is written

ψx1 + ψx2 + . . . + ψxn = ψx′
1 + ψx′

2 + . . . + ψx′
µ.

For instance, if α = 1 and α1 = x, ψx = − log x and s = δ + ax + a1x2 + . . . +
aµ−1xµ + xµ+1. Thus δ = (−1)µ+1x1x2 . . . xµ+1 = (−1)µ+1x′

1x′
2 . . . x′

µ+1 and we

may impose x′
2 = x′

3 = . . . = x′
µ+1 = 1 to get x′

1 = x1x2 . . . xµ+1. In this case,

the theorem gives log x1 + log x2 + . . . + log xµ+1 = log(x1x2 . . . xµ+1). A second

example is given by α = 1, α1 = 1+x2, ψx = − arctan x. Let x1, x2, x3 be solutions

of the equation 0 = δ + δ1x + (1 + x2)(a + x); we have arctan x1 + arctan x2 +
arctan x3 = C constant and x1x2x3 = −δ−a, x1+x2+x3 = −a, x1x2+x1x3+x2x3 =
δ1 + 1. Thus x1 + x2 + x3 − x1x2x3 = δ and x1x2 + x1x3 + x2x3 − 1 = δ1. Now

putting x3 = x′
2, x2 = −x′

2 and x1 = x′
1, we get C = arctan x′

1 and x′
1 + x′

1(x′
2)

2 = δ,

1 + (x′
2)

2 = −δ1, whence x′
1 = − δ

δ1
= x1+x2+x3−x1x2x3

1−x1x2−x1x3−x2x3
. Thus the theorem gives

arctan x1 + arctan x2 + arctan x3 = arctan
x1+x2+x3−x1x2x3

1−x1x2−x1x3−x2x3
.

At the end of this memoir, Abel generalises the relations (71). Considering the

integral
∫

fx · dx = ψx +
∑

A log(x − δ)

where fx and ψx are rational functions and the auxiliary equation ϕx = a + a1x +
. . . + an xn = 0, with the roots x1, x2, . . . , xn . By the theorem

∫

fx1 · dx1 +
∫

fx2 · dx2 + . . . +
∫

fxn · dxn

= ψx1 + ψx2 + . . . + ψxn +
∑

A log(x1 − δ)(x2 − δ) . . . (xn − δ) = ρ

where−dρ = da
(

fx1
ϕ′x1

+ fx2
ϕ′x2

+ . . . + fxn

ϕ′xn

)

+da1

(

x1· fx1
ϕ′x1

+ x2· fx2
ϕ′x2

+ . . . + xn · fxn

ϕ′xn

)

+

. . . + da1

(

xn
1 fx1

ϕ′x1
+ xn

2 fx2

ϕ′x2
+ . . . + xn

n fxn

ϕ′xn

)

.

Now ψx1 + ψx2 + . . . + ψxn is a rational function p of a, a1, . . . , an and

(x1 − δ)(x2 − δ) . . . (xn − δ) = (−1)n ϕδ

an
so that ρ = p +

∑

A(log ϕδ − log an)

and
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∂ρ

∂am

=
∂p

∂am

+
∑

A

(

1

ϕδ

∂ϕδ

∂am

−
1

an

∂an

∂am

)

= −
(

xm
1 fx1

ϕ′x1

+
xm

2 fx2

ϕ′x2

+ . . . +
xm

n fxn

ϕ′xn

)

.

Abel deduces that
xm

1 fx1

ϕ′x1
+ xm

2 fx2

ϕ′x2
+ . . . + xm

n fxn

ϕ′xn
= − ∂p

∂am
−

∑

Aδm

ϕδ
+

∑

A
an

(

1
2

± 1
2

)

where the superior sign is taken when m = n and the inferior sign when m < n. For

fx = 1, ψx = x, p = x1 + x2 + . . . + xn = − an−1

an
and A = 0. We find back (71)

and the relation

xn
1

ϕ′x1

+
xn

2

ϕ′x2

+ . . . +
xn

n

ϕ′xn

= −
an−1

a2
n

.

For fx = 1
x−δ

, p = 0 and A = 1; if Fx = β + β1x + . . . + βn xn we have

Fx1

(x1 − δ)ϕ′x1

+
Fx2

(x2 − δ)ϕ′x2

+ . . . +
Fxn

(xn − δ)ϕ′xn

=
βn

an

−
Fδ

ϕδ

and other relations by differentiating this one.

6 Elliptic functions

Abel is the founder of the theory of elliptic functions. He partook this glory with

Jacobi alone, for Gauss did not publish the important work he had done in this

field; the ‘grand prix’ of the parisian Academy of sciences was awarded to Abel

and Jacobi for their work on elliptic functions in 1830, after Abel’s death. Abel’s

work on elliptic functions was published in the second and the third volumes of

Crelle’s Journal (1827–1828), in a large memoir titled Recherches sur les finctions

elliptiques (Œuvres, t. I, p. 263–388).

Abel briefly recalls the main results of Euler, Lagrange and Legendre on elliptic

integrals and defines his elliptic function ϕα = x by the relation

α =
∫

0

dx
√

(1 − c2x2)(1 + e2x2 )
(72)

where c and e are real numbers. This definition is equivalent to the differential

equation

ϕ′α =
√

(1 − c2ϕ2α)(1 + e2ϕ2α)

with ϕ(0) = 0. Abel puts fα =
√

1 − c2ϕ2α and Fα =
√

1 + e2ϕ2α and explains

that the principal aim of his memoir is the resolution of the algebraic equation of

degree m2 which gives ϕα, fα, Fα when one knows ϕ(mα), f(mα), F(mα) (cf. our

§3).

The first paragraph (p. 266–278) of Abel’s memoir is devoted to the study of

the functions ϕα, fα and Fα. According to (72), α is a positive increasing function
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of x for 0 ≤ x ≤ 1
c
. Thus ϕα is a positive increasing function of α for 0 ≤ α ≤ ω

2

=
1/c
∫

0

dx√
(1−c2x2)(1+e2x2 )

and we have ϕ
(

ω
2

)

= 1
c
. Since α is an odd function of x,

ϕ(−α) = −ϕ(α). Now Abel puts ix instead of x in (72) (where i =
√

− 1) and gets

a purely imaginary value α = iβ, so that xi = ϕ(βi) where β =
x
∫

0

dx√
(1+c2x2)(1−e2x2 )

.

We see that β is a positive increasing function of x for 0 ≤ x ≤ 1
e

and that x is

a positive increasing function of β for

0 ≤ β ≤
̟

2
=

1/e
∫

0

dx
√

(1 + c2x2)(1 − e2x2 )

and we have ϕ
(

̟i
2

)

= i 1
e
. Abel notes that the exchange of c and e transforms ϕ(αi)

i

in ϕα, f(αi) in Fα, F(αi) in fα and exchanges ω and ̟ .

The function ϕα is known for −ω
2

≤ α ≤ ω
2

and for α = βi with −̟
2

≤ β ≤ ̟
2

.

Abel extends its definition to the entire complex domain by the addition theorem:

ϕ(α + β) =
ϕα · fβ · Fβ + ϕβ · fα · Fα

1 + e2c2ϕ2α · ϕ2β
,

f(α + β) =
fα · fβ − c2ϕα · ϕβ · Fα · Fβ

1 + e2c2ϕ2α · ϕ2β
, (73)

F(α + β) =
Fα · Fβ + e2ϕα · ϕβ · fα · fβ

1 + e2c2ϕ2α · ϕ2β
.

This theorem is a consequence of Euler addition theorem for elliptic integrals,

but Abel directly proves it by differentiating with respect to α and using ϕ′α =
fα · Fα, f ′α = −c2ϕα · Fα, F ′α = e2ϕα · fα. Thus, denoting by r the right hand

side of the first formula, he finds that ∂r
∂α

= ∂r
∂β

which shows that r is a function of

α + β. As r = ϕα when β = 0, this gives r = ϕ(α + β). From (73), Abel deduces

ϕ(α+β)+ϕ(α−β) =
2ϕα· fβ ·Fβ

R
, ϕ(α+β)−ϕ(α−β) =

2ϕβ · fα·Fα

R
, (74)

f(α+β)+ f(α−β) =
2 fα· fβ

R
, f(α+β)− f(α−β) =

−2c2ϕα·ϕβ ·Fα·Fβ

R
,

F(α+β)+F(α−β) =
2Fα·Fβ

R
, F(α+β)−F(α−β) =

2e2ϕα·ϕβ · fα· fβ

R

and

ϕ(α + β)ϕ(α − β) =
ϕ2α − ϕ2β

R
, f(α + β) f(α − β) =

f 2β − c2ϕ2α · F2β

R
(75)

F(α + β)F(α − β) =
F2β + e2ϕ2α · f 2β

R
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where R = 1 + e2c2ϕ2α ϕ2β.

On the other hand f
(

±ω
2

)

= F
(

±̟
2

i
)

= 0 give

ϕ
(

α ±
ω

2

)

= ±
1

c

fα

Fα
, f

(

α ±
ω

2

)

= ∓
√

e2 + c2
ϕα

Fα
, (76)

F
(

α ±
ω

2

)

=
√

e2 + c2

c

1

Fα
, ϕ

(

α ±
̟

2
i
)

= ±
i

e

Fα

fα
,

F
(

α ±
̟

2
i
)

= ±i
√

e2 + c2
ϕα

fα
, f

(

α ±
̟

2
i
)

=
√

e2 + c2

e

1

fα
.

These relations imply that

ϕ
(ω

2
+ α

)

= ϕ
(ω

2
− α

)

, f
(ω

2
+ α

)

= − f
(ω

2
− α

)

, (77)

F
(ω

2
+ α

)

= F
(ω

2
− α

)

, ϕ
(̟

2
i + α

)

= ϕ
(̟

2
i − α

)

,

F
(̟

2
i + α

)

= −F
(̟

2
i − α

)

, f
(̟

2
i + α

)

= f
(̟

2
i − α

)

and ϕ
(

α ± ω
2

)

ϕ
(

α + ̟
2

i
)

= ± i
ce

, F
(

α ± ω
2

)

= Fα

√
e2+c2

c
= f

(

α ± ̟
2

i
)

fα. We

deduce that ϕ
(

ω
2

+ ̟
2

i
)

= f
(

ω
2

+ ̟
2

i
)

= F
(

ω
2

+ ̟
2

i
)

= 1
0

i.e. infinity. From (77)

we have

ϕ(α + ω) = −ϕα = ϕ(α + ̟i), f(α + ω) = − fα = − f(α + ̟i), (78)

F(α + ω) = Fα = −F(α + ̟i)

and

ϕ(2ω + α) = ϕα = ϕ(2̟i + α) = ϕ(ω + ̟i + α), (79)

f(2ω + α) = fα = f(̟i + α), F(ω + α) = Fα = F(2̟i + α).

Thus the functions ϕα, fα, Fα are periodic:

ϕ(mω + n̟i ± α) = ±(−1)m+nϕα, f(mω + n̟i ± α) = (−1)m fα, (80)

F(mω + n̟i ± α) = (−1)n Fα.

The equation ϕ(α + βi) = 0 is equivalent to ϕα· f(βi)F(βi)+ϕ(βi) fα·Fα

1+e2c2ϕ2α·ϕ2(βi)
= 0 (cf.

(73)) and, as ϕα, f(βi), F(βi) are real and ϕ(βi) is purely imaginary, this signifies

ϕα · f(βi)F(βi) = 0 and ϕ(βi) fα · Fα = 0. These equations are satisfied by ϕα =
ϕ(βi) = 0 or by f(βi)F(βi) = fα·Fα = 0. The first solution gives α = mω, β = n̟

and it fits, for ϕ(mω + n̟i) = 0. The second solution gives α =
(

m + 1
2

)

ω, β =
(

n + 1
2

)

̟ and it does not fit, for ϕ
((

m + 1
2

)

ω +
(

n + 1
2

)

̟i
)

= 1
0
. In the same way,

Abel determines the roots of the equation fx = 0, which are x =
(

m + 1
2

)

ω + n̟i

and those of the equation Fx = 0, which are x = mω +
(

n + 1
2

)

̟i. From these

results and the formulae
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ϕx =
i

ec

1

ϕ
(

x − ω
2

− ̟
2

i
) , fx =

√
e2 + c2

e

1

f
(

x − ̟
2

i
) , Fx =

√
e2 + c2

c

1

F
(

x − ω
2

) ,

(81)

he deduces the poles of the functions ϕx, fx, Fx, which are x =
(

m + 1
2

)

ω +
(

n + 1
2

)

̟i.

From (74) ϕx − ϕa = 2ϕ( x−a
2 ) f ( x+a

2 )F( x+a
2 )

1+e2c2ϕ2( x+a
2 )ϕ2( x−a

2 )
. Thus the equation ϕx = ϕa is

equivalent to ϕ
(

x−a
2

)

= 0 or f
(

x+a
2

)

= 0 or F
(

x+a
2

)

= 0 or ϕ
(

x−a
2

)

= 1
0

or

ϕ
(

x+a
2

)

= 0. Thus the solutions are x = (−1)m+na + mω + n̟i. In the same way,

the solutions of fx = fa are given by x = ±a + 2mω + n̟i and those of Fx = Fa

by x = ±a + mω + 2n̟i.

The second paragraph (p. 279–281) of Abel’s memoir contains the proof by

complete induction that ϕ(nβ), f(nβ) and F(nβ) are rational functions of ϕβ, fβ

and Fβ when n is an integer. Writing ϕ(nβ) = Pn

Qn
, f(nβ) = P′

n

Qn
and F(nβ) = P′′

n

Qn

where Pn, P′
n, P′′

n and Qn are polynomials in ϕβ, fβ and Fβ, we have, by (74)

Pn+1

Qn+1

= −
Pn−1

Qn−1

+
2 fβ · Fβ Pn

Qn

1 + e2c2ϕ2β
P2

n

Q2
n

=
−Pn−1(Q2

n + c2e2x2 P2
n ) + 2Pn Qn Qn−1 yz

Qn−1 Rn

where x = ϕβ, y = fβ, z = Fβ and Rn = Q2
n + e2c2x2 P2

n , and we conclude that

Qn+1 = Qn−1 Rn, Pn+1 = −Pn−1 Rn + 2yzPnqn Qn−1.

In the same way P′
n+1 = −P′

n−1 Rn + 2yP′
n Qn Qn−1 and P′′

n+1 = −P′′
n−1 Rn +

2yP′′
n Qn Qn−1. These recursion formulae, together with y2 = 1 − c2x2 and z2 =

1 + e2x2, show that Qn,
P2n

xyz
,

P2n+1

x
, P′

2n,
P′

2n+1

y
, P′′

2n and
P′′

2n+1

z
are polynomials in x2.

The equations ϕ(nβ) = Pn

Qn
, f(nβ) = P′

n

Qn
and F(nβ) = P′′

n

Qn
are studied in

paragraph III (p. 282–291). When n is even, here noted 2n, the first equation is

written

ϕ(2nβ) = xyzψ(x2) = xψ(x2)
√

(1 − c2x2)(1 + e2x2)

or ϕ2(2nβ) = x2(ψx2)2(1 − c2x2)(1 + e2x2) = θ(x2), where x = ϕβ is one of

the roots. If x = ϕα is another root, ϕ(2nα) = ±ϕ(2nβ) and, by the preceding

properties,

α = ±((−1)m+µ2nβ + mω + µ̟i)).

Thus the roots of our equation are ϕα = ±ϕ
(

(−1)m+µβ + m
2n

ω + µ

2n
̟i

)

, formula

in which we may replace m and µ by the remainders of their division by 2n, because

of (80). Abel remarks that, when 0 ≤ m, µ < 2n, all the values of ϕα so obtained

are different. It results that the total number of roots is equal to 8n2 and this is

the degree of the equation, for it cannot have any multiple root. When n = 1,

the equation is (1 + e2c2x4)ϕ2(2β) = 4x2(1 − c2x2)(1 + e2x2) and its roots are

±ϕβ,±ϕ
(

−β + ω
2

)

,±ϕ
(

−β + ̟
2

i
)

and ±ϕ
(

β + ω
2

+ ̟
2

i
)

.
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When n is an odd number, here written 2n+1, the equation is ϕ(2n+1)β = P2n+1

Q2n+1

and its roots x = ϕ
(

(−1)m+µβ + m
2n+1

ω + µ

2n+1
̟i

)

where −n ≤ m, µ ≤ n. The

number of these roots is (2n + 1)2 and it is the degree of the equation. For example

n = 1 gives an equation of degree 9 with the roots ϕβ, ϕ
(

−β − ω
3

)

, ϕ
(

−β + ω
3

)

,

ϕ
(

−β − ̟
3

i
)

, ϕ
(

−β + ̟
3

i
)

, ϕ
(

β − ω
3

− ̟
3

i
)

, ϕ
(

β − ω
3

+ ̟
3

i
)

, ϕ
(

β + ω
3

− ̟
3

i
)

and ϕ
(

β + ω
3

+ ̟
3

i
)

.

Abel studies in the same way the equations f(nβ) = P′
n

Qn
and F(nβ) = P′′

n

Qn
of

which the roots are respectively y= f
(

β+ 2m
n

ω+ µ

n
̟i

)

and z = F
(

β+ m
n
ω+ 2µ

n
̟i

)

,

(0 ≤ m, µ < n ). Each of these equations is of degree n2.

There are particular cases: P2
2n = 0, with the roots x = ±ϕ

(

m
2n

ω + µ

2n
̟i

)

(0 ≤ m, µ ≤ 2n − 1), P2n+1 = 0, with the roots x = ϕ
(

m
2n+1

ω + µ

2n+1
̟i

)

(−n ≤
m, µ ≤ n), P′

n = 0, with the roots y = f
((

2m + 1
2

)

ω
n

+ µ

n
̟i

)

, P′′
n = 0, with

the roots z = F
(

m
n
ω +

(

2µ + 1
2

)

̟i
n

)

(0 ≤ m, µ ≤ n − 1) and Q2n = 0, with the

roots x = ϕ
((

m + 1
2

)

ω
2n

+
(

µ + 1
2

)

̟i
2n

)

(0 ≤ m, µ ≤ 2n − 1), Q2n+1 = 0 with the

roots x = (−1)m+µϕ
((

m + 1
2

)

ω
2n+1

+
(

µ + 1
2

)

̟i
2n+1

)

(−n ≤ m, µ ≤ n, (m, µ) ≤
(n, n)).

The algebraic solution of the equations ϕ(nβ) = Pn

Qn
, f(nβ) = P′

n

Qn
and F(nβ) =

P′′
n

Qn
is given in paragraph IV (p. 291–305). It is sufficient to deal with the case in

which n is a prime number. The case n = 2 is easy for if x = ϕ α
2

, y = f α
2

and

z = F α
2

, we have

fα =
y2 − c2x2z2

1 + e2c2x4
=

1 − 2c2x2 − c2e2x4

1 + e2c2x4
,

Fα =
z2 + e2 y2x2

1 + e2c2x4
=

1 + 2e2x2 − e2c2x4

1 + e2c2x4
.

Hence Fα−1
1+ fα

= e2x2 , 1− fα

Fα+1
= c2x2 and z2 = Fα+ fα

1+ fα
, y2 = Fα+ fα

1+Fα
and we draw

ϕ α
2

= 1
c

√

1− fα

1+Fα
= 1

e

√

Fα−1
fα+1

, f α
2

=
√

Fα+ fα

1+Fα
, F α

2
=

√

Fα+ fα

1+ fα
. From these formulae,

it is possible to express ϕ α
2n , f α

2n , F α
2n with square roots in function of ϕα, fα, Fα.

Taking α = ω
2

as an example, Abel finds

ϕ
ω

4
=

1
√

c2 + c
√

e2 + c2
=

√

c
√

e2 + c2 − c2

ec
,

f
ω

4
=

1

e

√

e2 + c2 − c
√

e2 + c2, F
ω

4
= 4

√

1 +
e2

c2
=

√

F
ω

2
.

The case n odd was explained in our §3. The essential point was that the auxiliary

functions such as ϕ1β are rational functions of ϕβ because of the addition theorem

(73). At the same place, we have dealt with the equation P2n+1 = 0 (§V of Abel’s

memoir, p. 305–314)) which determines the quantities x = ϕ
(

mω+µ̟i

2n+1

)

. We saw
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that the equation in r = x2 is of degree 2n(n + 1) and that it may be decomposed in

2n + 2 equations of degree n of which the coefficients are rational functions of the

roots of an equation of degree 2n + 2. The equations of degree n are all solvable by

radicals, but the equation of degree 2n + 2 is not solvable in general.

In paragraph VI (p. 315–323), Abel gives explicit formulae for

ϕ((2n + 1)β), f((2n + 1)β) and F((2n + 1)β)

in function of the quantities ϕ
(

β + mω+µ̟i

2n+1

)

, f
(

β + mω+µ̟i

2n+1

)

, F
(

β + mω+µ̟i

2n+1

)

.

Let P2n+1 = Ax(2n+1)2 + . . . + Bx, P′
2n+1 = A′y(2n+1)2 + . . . + B′y, P′′

2n+1 =
A′′z(2n+1)2 + . . . + B′′z and Q2n+1 = Cx(2n+1)2−1 + . . . + D = C′y(2n+1)2−1 + . . .

+D′ = C′′z(2n+1)2−1 + . . . + D′′ (an even function). From the equations

Ax(2n+1)2 + . . . + Bx = ϕ((2n + 1)β · (Cx(2n+1)2−1 + . . . + D),

A′y(2n+1)2 + . . . + B′y = f((2n + 1)β · (C′y(2n+1)2−1 + . . . + D′),

A′′z(2n+1)2 + . . . + B′′z = F((2n + 1)β · (C′′z(2n+1)2−1 + . . . + D′′),

considering the sum and the product of the roots, Abel deduces that

ϕ((2n + 1)β) =
A

C

n
∑

m=−n

n
∑

µ=−n

(−1)m+µϕ

(

β +
mω + µ̟i

2n + 1

)

=
A

D

n
∏

m=−n

n
∏

µ=−n

ϕ

(

β +
mω + µ̟i

2n + 1

)

. (82)

In the same way

f((2n + 1)β =
A′

C′

n
∑

m=−n

n
∑

µ=−n

(−1)m f

(

β +
mω + µ̟i

2n + 1

)

=
A′

D′

n
∏

m=−n

n
∏

µ=−n

f

(

β +
mω + µ̟i

2n + 1

)

(82′)

and

F((2n + 1)β) =
A′′

C′′

n
∑

m=−n

n
∑

µ=−n

(−1)µF

(

β +
mω + µ̟i

2n + 1

)

=
A′′

D′′

n
∏

m=−n

n
∏

µ=−n

F

(

β +
mω + µ̟i

2n + 1

)

. (82′′)

The coefficients A
C
, A′

C′ ,
A′′
C′′ , which do not depend on β, are determined by letting β

tend towards the pole ω
2

+ ̟
2

i, for they are the respective limit values of

ϕ((2n + 1)β)

ϕβ
,

f((2n + 1)β)

fβ
,

F((2n + 1)β)

Fβ
.
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Putting β = ω
2

+ ̟
2

i + α, where α tends towards 0, and using (80) and (81), Abel

determines A
C

= 1
2n+1

, A′
C′ = A′′

C′′ = (−1)n

2n+1
. Since the limit of ϕ((2n+1)β)

ϕβ
when β tends

towards 0 is 2n + 1 we find

2n + 1 =
A

D

n
∏

m=1

ϕ2

(

mω

2n + 1

) n
∏

µ=1

ϕ2

(

µ̟i

2n + 1

)

×
n

∏

m=1

n
∏

µ=1

ϕ2

(

mω + µ̟i

2n + 1

)

ϕ2

(

mω − µ̟i

2n + 1

)

.

In the same way, letting β tend respectively towards ω
2

and ̟i
2

we get

(−1)n(2n + 1) =
A′

D′

n
∏

m=1

f 2

(

ω

2
+

mω

2n + 1

) n
∏

µ=1

f 2

(

ω

2
+

µ̟i

2n + 1

)

×
n

∏

m=1

n
∏

µ=1

f 2

(

ω

2
+

mω + µ̟i

2n + 1

)

f 2

(

ω

2
+

mω − µ̟i

2n + 1

)

=
A′′

D′′

n
∏

m=1

F2

(

̟

2
i +

mω

2n + 1

) n
∏

µ=1

F2

(

̟

2
i +

µ̟i

2n + 1

)

×
n

∏

m=1

n
∏

µ=1

F2

(

̟

2
i +

mω + µ̟i

2n + 1

)

F2

(

̟

2
i +

mω − µ̟i

2n + 1

)

from which it is possible to draw the values of A
D
, A′

D′ and A′′
D′′ . Abel further simplifies

the expressions of ϕ((2n + 1)β), f((2n + 1)β) and F((2n + 1)β) as products by the

formulae

ϕ(β + α)ϕ(β − α)

ϕ2α
= −

1 − ϕ2β

ϕ2α

1 − ϕ2β

ϕ2(α+ ω
2 + ̟

2 i)

,

f(β + α) f(β − α)

f 2
(

ω
2

+ α
) = −

1 − f 2β

f 2( ω
2 +α)

1 − f 2β

f 2(α+ ω
2 + ̟

2 i)

,

F(β + α)F(β − α)

F2
(

̟
2

i + α
) = −

1 − F2β

F2(̟
2 i+α)

1 − F2β

F2(α+ ω
2 + ̟

2 i)

(cf. (75) and (81))

and he thus obtains

ϕ((2n + 1)β)

= (2n + 1)ϕβ

n
∏

m=1

1 − ϕ2β

ϕ2
(

mω
2n+1

)

1 − ϕ2β

ϕ2
(

ω
2 + ̟

2 i+ mω
2n+1

)

n
∏

µ=1

1 − ϕ2β

ϕ2
(

µ̟i
2n+1

)

1 − ϕ2β

ϕ2
(

ω
2 + ̟

2 i+ µ̟i
2n+1

)

×
n

∏

m=1

n
∏

µ=1

1 − ϕ2β

ϕ2
(

mω+µ̟i
2n+1

)

1 − ϕ2β

ϕ2
(

ω
2 + ̟

2 i+ mω+µ̟i
2n+1

)

1 − ϕ2β

ϕ2
(

mω−µ̟i
2n+1

)

1 − ϕ2β

ϕ2
(

ω
2 + ̟

2 i+ mω−µ̟i
2n+1

)

, (83)
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f((2n + 1)β)

=(−1)n(2n + 1) fβ

n
∏

m=1

1 − f 2β

f 2
(

ω
2 + mω

2n+1

)

1 − f 2β

f 2
(

ω
2 + ̟

2 i+ mω
2n+1

)

n
∏

µ=1

1 − f 2β

f 2
(

ω
2 + µ̟i

2n+1

)

1 − f 2β

f 2
(

ω
2 + ̟

2 i+ µ̟i
2n+1

)

×
n

∏

m=1

n
∏

µ=1

1 − f 2β

f 2
(

ω
2 + mω+µ̟i

2n+1

)

1 − f 2β

f 2
(

ω
2 + ̟

2 i+ mω+µ̟i
2n+1

)

1 − f 2β

f 2
(

ω
2 + mω−µ̟i

2n+1

)

1 − f 2β

f 2
(

ω
2 + ̟

2 i+ mω−µ̟i
2n+1

)

(83′)

F((2n + 1)β)

=(−1)n(2n + 1)Fβ

n
∏

m=1

1 − F2β

F2
(

̟
2 i+ mω

2n+1

)

1 − F2β

F2
(

ω
2 + ̟

2 i+ mω
2n+1

)

n
∏

µ=1

1 − F2β

F2
(

̟
2 i+ µ̟i

2n+1

)

1 − F2β

F2
(

ω
2 + ̟

2 i+ µ̟i
2n+1

)

×
n

∏

m=1

n
∏

µ=1

1 − F2β

F2
(

̟
2 i+ mω+µ̟i

2n+1

)

1 − F2β

F2
(

ω
2 + ̟

2 i+ mω+µ̟i
2n+1

)

1 − F2β

F2
(

̟
2 i+ mω−µ̟i

2n+1

)

1 − F2β

F2
(

ω
2 + ̟

2 i+ mω−µ̟i
2n+1

)

(83′′)

expressions of ϕ((2n + 1)β), f((2n + 1)β) and F((2n + 1)β) in rational functions

of ϕβ, fβ and Fβ respectively. Abel also transforms the last two to have f((2n+1)β)

fβ

and F((2n+1)β)

Fβ
in rational functions of ϕβ.

In his paragraph VII (p. 323–351), Abel keeps α = (2n + 1)β fixed in the

formulae (82) and (83) and let n tend towards infinity in order to obtain expansions

of his elliptic functions in infinite series and infinite products. From (82) with the

help of (81), we have

ϕα =
1

2n + 1
ϕ

α

2n + 1

+
1

2n + 1

n
∑

m=1

(−1)m

(

ϕ

(

α + mω

2n + 1

)

+ ϕ

(

α − mω

2n + 1

))

+
1

2n + 1

n
∑

µ=1

(−1)µ
(

ϕ

(

α + µ̟i

2n + 1

)

+ ϕ

(

α − µ̟i

2n + 1

))

−
i

ec

n
∑

m=1

n
∑

µ=1

(−1)m+µψ(n − m, n − µ)

+
i

ec

n
∑

m=1

n
∑

µ=1

(−1)m+µψ1(n − m, n − µ)

where
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ψ(m, µ) =
1

2n + 1













1

ϕ

(

α+
(

m+ 1
2

)

ω+
(

µ+ 1
2

)

̟i

2n+1

) +
1

ϕ

(

α−
(

m+ 1
2

)

ω−
(

µ+ 1
2

)

̟i

2n+1

)













and

ψ1(m, µ) =
1

2n + 1













1

ϕ

(

α+
(

m+ 1
2

)

ω−
(

µ+ 1
2

)

̟i

2n+1

) +
1

ϕ

(

α−
(

m+ 1
2

)

ω+
(

µ+ 1
2

)

̟i

2n+1

)













.

Now

Am = (2n + 1)

(

ϕ

(

α + mω

2n + 1

)

+ ϕ

(

α − mω

2n + 1

))

= (2n + 1)
2ϕ

(

α
2n+1

)

f
(

mω
2n+1

)

F
(

mω
2n+1

)

1 + e2c2ϕ2
(

mω
2n+1

)

ϕ2
(

α
2n+1

)

and

Bµ = (2n + 1)

(

ϕ

(

α + µ̟i

2n + 1

)

+ ϕ

(

α − µ̟i

2n + 1

))

= (2n + 1)
2ϕ

(

α
2n+1

)

f
(

µ̟i

2n+1

)

F
(

µ̟i

2n+1

)

1 + e2c2ϕ2
(

µ̟i

2n+1

)

ϕ2
(

α
2n+1

)

remain bounded and the first part 1
2n+1

ϕ α
2n+1

+ 1

(2n+1)2

n
∑

m=1

(−1)m(Am + Bm) of ϕα

has 0 for limit when n tends towards ∞. Thus

ϕα = −
i

ec
lim

n
∑

m=1

n
∑

µ=1

(−1)m+µψ(n − m, n − µ)

+
i

ec
lim

n
∑

m=1

n
∑

µ=1

(−1)m+µψ1(n − m, n − µ).

It remains to compute the limit of
n−1
∑

m=0

n−1
∑

µ=0

(−1)m+µψ(m, µ) for the second part

will be deduced from the first by changing the sign of i. We have ψ(m, µ) =
1

2n+1

2ϕ
(

α
2n+1

)

θ
(

εµ
2n+1

)

ϕ2
(

α
2n+1

)

−ϕ2
(

εµ
2n+1

) where θε = fεFε and εµ =
(

m + 1
2

)

ω +
(

µ + 1
2

)

̟i (cf.

(74) and (75)) and this has for limit θ(m, µ) = 2α

α2−
((

m+ 1
2

)

ω+
(

µ+ 1
2

)

̟i
)2 when n
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tends towards ∞. Abel tries to prove that
n−1
∑

µ=1

(−1)µψ(m, µ) −
n−1
∑

µ=1

(−1)µθ(m, µ)

is negligible with respect to 1
2n+1

by estimating the difference ψ(m, µ) − θ(m, µ),

but his reasoning is not clear. Then he replaces
n−1
∑

µ=1

(−1)µθ(m, µ) by the sum up to

infinity using a sum formula to estimate
∞
∑

µ=n

(−1)µθ(m, µ), again negligible with

respect to 1
2n+1

. He finally obtains

ϕα =
i

ec

∞
∑

m=1

(−1)m

∞
∑

µ=1

(−1)µ

(

2α

α2 −
((

m + 1
2

)

ω −
(

µ + 1
2

)

̟i
)2

−
2α

α2 −
((

m + 1
2

)

ω +
(

µ + 1
2

)

̟i
)2

)

=
1

ec

∞
∑

m=1

(−1)m

∞
∑

µ=1

(−1)µ

(

(2µ + 1)̟
(

α −
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2

−
(2µ + 1)̟

(

α +
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2

)

. (84)

By the same method, Abel obtains

fα =
1

e

∞
∑

µ=0

( ∞
∑

m=0

(−1)m
2
(

α +
(

m + 1
2

)

ω
)

(

α +
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2

−
∞

∑

m=0

(−1)m
2
(

α −
(

m + 1
2

)

ω
)

(

α −
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2

)

, (84′)

Fα =
1

c

∞
∑

m=0





∞
∑

µ=0

(−1)µ
(2µ + 1)̟

(

α −
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2

+
∞

∑

µ=0

(−1)µ
(2µ + 1)̟

(

α +
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2



 . (84′′)

He deals with the formulae (83) in the same way by taking the logarithms.

For any constants k and ℓ,

1−
ϕ2

(

α
2n+1

)

ϕ2
(

mω+µ̟i+k
2n+1

)

1−
ϕ2

(

α
2n+1

)

ϕ2
(

mω+µ̟i+ℓ
2n+1

)

has a limit equal to
1− α2

(mω+µ̟i+k)2

1− α2

(mω+µ̟i+ℓ)2

. Abel

tries to proves that the difference of the logarithms ψ(m, µ) and θ(m, µ) of these

expressions is dominated by 1

(2n+1)2 , with the difficulty that m and µ vary in the

sum to be computed. He deduces that the difference
n
∑

µ=1

ψ(m, µ)−
n
∑

µ=1

θ(m, µ) is
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negligible with respect to 1
2n+1

and replaces
n
∑

µ=1

θ(m, µ) by
∞
∑

µ=1

θ(m, µ). The proof

that
∞
∑

µ=n+1

θ(m, µ) =
∞
∑

µ=1

θ(m, µ + n) is negligible with respect to 1
2n+1

is based on

the expansion of θ(m, µ + n) in powers of α but it is not sufficient. Abel finally gets

lim
n
∑

m=1

n
∑

µ=1

ψ(m, µ) =
∞
∑

m=1

∞
∑

µ=1

θ(m, µ). He deals in the same way with the simple

products in (83) and obtains

ϕα =α

∞
∏

m=1

(

1 −
α2

(mω)2

) ∞
∏

µ=1

(

1 +
α2

(µ̟)2

)

×
∞
∏

m=1









∞
∏

µ=1

1 − α2

(mω+µ̟i)2

1 − α2
((

m− 1
2

)

ω+
(

µ− 1
2

)

̟i
)2

∞
∏

µ=1

1 − α2

(mω−µ̟i)2

1 − α2
((

m− 1
2

)

ω−
(

µ− 1
2

)

̟i
)2









,

fα =
∞
∏

m=1

(

1 −
α2

(

m − 1
2

)2
ω2

)

×
∞
∏

m=1

∞
∏

µ=1

1 − α2
((

m− 1
2

)

ω+µ̟i
)2

1 − α2
((

m− 1
2

)

ω+
(

µ− 1
2

)

̟i
)2

1 − α2
((

m− 1
2

)

ω−µ̟i
)2

1 − α2
((

m− 1
2

)

ω−
(

µ− 1
2

)

̟i
)2

,

Fα =
∞
∏

µ=1

(

1 +
α2

(

µ − 1
2

)2
̟2

)

×
∞
∏

m=1

∞
∏

µ=1

1 − α2
(

mω+
(

µ− 1
2

)

̟i
)2

1 − α2
((

m− 1
2

)

ω+
(

µ− 1
2

)

̟i
)2

1 − α2
(

mω−
(

µ− 1
2

)

̟i
)2

1 − α2
((

m− 1
2

)

ω−
(

µ− 1
2

)

̟i
)2

.

Abel also writes these formulae in a real form.

The Eulerian products for sin y and cos y lead to

∞
∏

µ=1

1 − z2

µ2π2

1 − y2
(

µ− 1
2

)2
π2

=
sin z

z cos y
and

∞
∏

µ=1

1 − z2
(

µ− 1
2

)2
π2

1 − y2
(

µ− 1
2

)2
π2

=
cos z

cos y

and this permits to transform the double products of Abel’s formulae in simple

products:

ϕα =
̟

π

sin
(

α πi
̟

)

i

∞
∏

m=1

(

1 −
α2

m2ω2

)
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×
∞
∏

m=1

sin(α + mω)πi
̟

sin(α − mω)πi
̟

cos2
(

m − 1
2

)

ωπi
̟

cos
(

α +
(

m − 1
2

)

ω
)

πi
̟

cos
(

α −
(

m − 1
2

)

ω
)

πi
̟

sin2 mωπi
̟

×
(

mωπi
̟

)2

(α + mω)(α − mω)π2i2

̟2

=
̟

π

sin α
̟

πi

i

∞
∏

m=1

1 − sin2 α π
̟ i

sin2 mω π
̟ i

1 − sin2 π
̟ i

cos2
(

m− 1
2

)

ω π
̟ i

=
1

2

̟

π

(

h
α
̟ π − h− α

̟ π
)

∞
∏

m=1

1 −
(

h
α
̟ π−h− α

̟ π

hm ω
̟ π−h−m ω

̟ π

)2

1 +
(

h
α
̟ π−h− α

̟ π

h

(

m− 1
2

)

ω
̟ π−h

−
(

m− 1
2

)

ω
̟ π

)

=
ω

π
sin

απ

ω

∞
∏

m=1

1 + 4 sin2 απ
ω

(

h
m̟π

ω −h− m̟π
ω

)2

1 − 4 sin2 απ
ω

(

h
(2m−1)̟π

2ω −h
− (2m−1)̟π

2ω

)2

(85)

where h = 2.712818 . . . is the basis of natural logarithms. In the same way, he

obtains

Fα =
∞
∏

m=1

1 + 4 sin2 απ
ω

(

h
(2m+1)̟π

ω −h− (2m+1)̟π
ω

)2

1 − 4 sin2 απ
ω

(

h
(2m+1)̟π

ω −h− (2m+1)̟π
ω

)2

,

fα = cos
απ

ω

∞
∏

m=1

1 − 4 sin2 απ
ω

(

h
m̟π

ω +h− m̟π
ω

)2

1 − 4 sin2 απ
ω

(

h
(2m−1)̟π

2ω +h
− (2m−1)̟π

2ω

)2

.

These expansions were known to Gauss and they were independently discovered by

Jacobi, who used a passage to the limit in the formulae of transformation for the

elliptic functions.

The expansion of 1
chy

in simple fractions gives

∞
∑

µ=1

(−1)µ
(2µ + 1)̟

(

α ±
(

m + 1
2

)

ω
)2 +

(

µ + 1
2

)2
̟2

=
2π

̟

1

h

(

α±
(

m+ 1
2

)

ω
)

π
̟ + h

−
(

α±
(

m+ 1
2

)

ω
)

π
̟

which permits to transform the formulae (84) in simple series. Thus
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ϕα =
2

ec

π

̟

∞
∑

m=0

(−1)m

(

1

h

(

α−
(

m+ 1
2

)

ω
)

π
̟ + h

−
(

α−
(

m+ 1
2

)

ω
)

π
̟

−
1

h

(

α+
(

m+ 1
2

)

ω
)

π
̟ + h

−
(

α+
(

m+ 1
2

)

ω
)

π
̟

)

=
2

ec

π

̟

∞
∑

m=0

(−1)m

(

h
απ
̟ − h− απ

̟

)

(

h

(

m+ 1
2

)

ωπ
̟ − h

−
(

m+ 1
2

)

ωπ
̟

)

h
2απ
̟ + h− 2απ

̟ + h(2m+1) ωπ
̟ + h−(2m+1) ωπ

̟

=
4

ec

π

ω

∞
∑

m=0

(−1)m

sin απ
̟

·
(

h

(

m+ 1
2

)

̟π
ω − h

−
(

m+ 1
2

)

̟π
ω

)

h(2m+1) ̟π
ω + 2 cos 2α π

ω
+ h−(2m+1) ̟π

ω

(86)

and

Fα =
2

c

π

̟

∞
∑

m=0

(

h
απ
̟ + h− απ

̟

)

(

h

(

m+ 1
2

)

ωπ
̟ + h

−
(

m+ 1
2

)

ωπ
̟

)

h
2απ
̟ + h− 2απ

̟ + h(2m+1) ωπ
̟ + h−(2m+1) ωπ

̟

,

fα =
4

e

π

ω

∞
∑

m=0

cos απ
ω

·
(

h

(

m+ 1
2

)

̟π
ω + h

−
(

m+ 1
2

)

̟π
ω

)

h(2m+1) ̟π
ω + 2 cos 2α π

ω
+ h−(2m+1) ̟π

ω

.

In the lemniscatic case, where e = c = 1, one has ω = ̟ and these expansions take

a simpler form

ϕ
(

α
ω

2

)

= 2
π

ω

(

h
απ
2 − h− απ

2

h
π
2 + h− π

2

−
h

3απ
2 − h− 3απ

2

h
3π
2 + h− 3π

2

+
h

5απ
2 − h− 5απ

2

h
5π
2 + h− 5π

2

− . . .

)

=
4π

ω

(

sin
(

α
π

2

) h
π
2

1 + hπ
− sin

(

3α
π

2

) h
3π
2

1 + h3π
+ sin

(

5α
π

2

) h
5π
2

1 + h5π
− . . .

)

,

F
(

α
ω

2

)

= 2
π

ω

(

h
απ
2 + h− απ

2

h
π
2 − h− π

2

−
h

3απ
2 + h− 3απ

2

h
3π
2 − h− 3π

2

+
h

5απ
2 + h− 5απ

2

h
5π
2 − h− 5π

2

− . . .

)

,

f
(

α
ω

2

)

=
4π

ω

(

cos
(

α
π

2

) h
π
2

hπ −1
−cos

(

3α
π

2

) h
3π
2

h3π −1
+cos

(

5α
π

2

) h
5π
2

h5π −1
−. . .

)

and, taking α = 0, ω
2

= 2π

(

h
π
2

hπ−1
− h

3π
2

h3π−1
+ h

5π
2

h5π−1
− . . .

)

=
1
∫

0

dx√
1−x4

,

ω2

4
= π2

(

h
π
2

hπ + 1
− 3

h
3π
2

h3π + 1
+ 5

h
5π
2

h5π + 1
− . . .

)

.

The second part of Abel’s memoir, beginning with paragraph VIII (p. 352–362),

was published in 1828. This paragraph is devoted to the algebraic solution of the
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equation Pn = 0 which gives ϕ
(

ω
n

)

in the lemniscatic case and for n a prime number

of the form 4ν + 1. Abel announces that there is an infinity of other cases where the

equation Pn = 0 is solvable by radicals.

Here, by the addition theorem (73), ϕ(m +µi)δ = ϕ(mδ) f(µδ)F(µδ)+iϕ(µδ) f(mδ)F(mδ)

1−ϕ2(mδ)ϕ2(µδ)

= ϕδT where T is a rational function of (ϕδ)2 because of the formulae of multipli-

cation. One says that there exists a complex multiplication. Putting ϕδ = x, we have

ϕ(m + µi)δ = xψ(x2). Now ϕ(δi) = iϕδ = ix and ϕ(m + µi)iδ = iϕ(m + µi)δ =
ixψ(−x2) and this shows that ψ(−x2) = ψ(x2). In other words, ψ is an even function

and T is a rational function of x4. For instance

ϕ(2 + i)δ =
ϕ(2δ) fδ · Fδ + iϕδ · f(2δ)F(2δ)

1 − (ϕ2δ)2ϕ2δ
,

where ϕ(2δ) = 2x
√

1−x4

1+x4 , fδ =
√

1 − x2, Fδ =
√

1 + x2, f(2δ) = 1−2x2−x4

1+x4 and

F(2δ) = 1+2x2−x4

1+x4 . Thus ϕ(2 + i)δ = xi 1−2i−x4

1−(1−2i)x4 . Gauss had already discovered the

complex multiplication of lemniscatic functions and the fact that it made possible

the algebraic solution of the division of the periods. He made an allusion to this

fact in the introduction to the seventh section of his Disquisitiones arithmeticae, but

never publish anything on the subject. We have explained this algebraic solution in

our §3.

The ninth paragraph of Abel’s memoir (p. 363–377) deals with the transformation

of elliptic functions. The transformation of order 2 was known since Landen (1775)

and Lagrange (1784) and Legendre made an extensive suty of it in his Exercices

de calcul integral. Later, in 1824, Legendre discovered another transformation, of

order 3, which Jacobi rediscovered in 1827 together with a new transformation, of

order 5. Then Jacobi announced the existence of transformations of any orders, but

he was able to prove this existence only in 1828, using the idea of inversion of the

elliptic integrals which came from Abel. Independently from Jacobi, Abel built the

theory of transformations. Here is his statement:

“If one designates by α the quantity (m+µ)ω+(m−µ)̟i

2n+1
, where at least one of the

two integers m and µ is relatively prime with 2n + 1, one has

∫

dy
√

(1 − c2
1 y2)(1 + e2

1 y2)

= ±a

∫

dx
√

(1 − c2x2)(1 + e2x2)
(87)

where y = f · x
(ϕ2α−x2)(ϕ22α−x2)···(ϕ2nα−x2)

(1+e2c2ϕ2α·x2)(1+e2c2ϕ22α·x2)···(1+e2c2ϕ2nα·x2)
,

1

c1

=
f

c

(

ϕ
(ω

2
+ α

)

ϕ
(ω

2
+ 2α

)

· · · ϕ
(ω

2
+ nα

))2

,

1

e1

=
f

e

(

ϕ

(

̟i

2
+ α

)

ϕ

(

̟i

2
+ 2α

)

· · · ϕ
(

̟i

2
+ nα

))2

,

a = f(ϕα · ϕ2α · ϕ3α · · · ϕnα)2.” (88)
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Here f is indeterminate and e2, c2 may be positive or negative. By (80) (periodicity),

we have ϕ(θ + (2n + 1)α) = ϕθ or ϕ(θ + (n + 1)α) = ϕ(θ − nα). Now if

ϕ1θ = ϕθ + ϕ(θ + α) + . . . + ϕ(θ + 2nα),

we have ϕ1(θ +α) = ϕ1θ and ϕ1θ admits the period α. This function may be written

ϕ1θ =ϕθ + ϕ(θ + α) + ϕ(θ − α) + ϕ(θ + 2α) + ϕ(θ − 2α)

+ . . . + ϕ(θ + nα) + ϕ(θ − nα)

=ϕθ +
2ϕθ · fα · Fα

1 + e2c2ϕ2α · ϕ2θ
+

2ϕθ · f 2α · F2α

1 + e2c2ϕ22α · ϕ2θ

+ . . . +
2ϕθ · fnα · Fnα

1 + e2c2ϕ2nα · ϕ2θ
, (89)

a rational function ψx of x = ϕθ. Note that the auxiliary function ϕ1θ used to solve

the equation of division in the first part was precisely of this type (see §3).

For any ε, R =
(

1 − ψx

ϕ1ε

)

(1+e2c2ϕ2αx2) . . . (1+e2c2ϕ2nαx2) is a polynomial

of degree 2n + 1 in x. It is annihilated by x = ϕε and so by x = ϕ(ε + mα), m any

integer. Since ϕε, ϕ(ε+α), ϕ(ε+ 2α), . . . , ϕ(ε+ 2nα) are all different, they are the

roots of R and

R = A

(

1 −
x

ϕε

)(

1 −
x

ϕ(ε + α)

)

· · ·
(

1 −
x

ϕ(ε + 2nα)

)

(90)

where A is found to be 1 by making x = 0. Multiplying by ϕε and then making

ε = 0, we obtain

ψx = gx

(

1 − x
ϕα

)(

1 − x
ϕ2α

)

· · ·
(

1 − x
ϕ2nα

)

(1 + e2c2ϕ2α · x2) · · · (1 + e2c2ϕ2nα · x2)

= gx

(

1 − x2

ϕ2α

) (

1 − x2

ϕ22α

)

· · ·
(

1 − x2

ϕ22nα

)

(1 + e2c2ϕ2α · x2) · · · (1 + e2c2ϕ2nα · x2)

(91)

where g = 1+2 fα · Fα+2 f 2α · F2α+ . . . 2 fnα · Fnα is the value of ϕ1ε

ϕε
for ε = 0.

Doing ε = ω
2

in R , we have

1 −
ψx

ϕ1
ω
2

=
(

1 −
x

ϕω
2

)

(

1 −
x

ϕ
(

ω
2

+ α
)

)(

1 −
x

ϕ
(

ω
2

+ 2α
)

)

· · ·
(

1 −
x

ϕ
(

ω
2

+ 2nα
)

)

1

ρ

= (1 − cx)

(

1 −
x

ϕ
(

ω
2

+ α
)

)2 (

1 −
x

ϕ
(

ω
2

+ 2α
)

)2

· · ·
(

1 −
x

ϕ
(

ω
2

+ nα
)

)2
1

ρ

where ρ = (1 + e2c2ϕ2α · x2)(1 + e2c2ϕ22α · x2) · · · (1 + e2c2ϕ2nα · x2). Changing

x in −x, we have
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1 +
ψx

ϕ1
ω
2

= (1 + cx)

(

1 +
x

ϕ
(

ω
2

+ α
)

)2 (

1 +
x

ϕ
(

ω
2

+ 2α
)

)2

× · · ·
(

1 +
x

ϕ
(

ω
2

+ nα
)

)2
1

ρ
.

Abel puts y = kψx, c1 = 1
kϕ1

ω
2

(k a constant),

t =
(

1 −
x

ϕ
(

ω
2

+ α
)

)(

1 −
x

ϕ
(

ω
2

+ 2α
)

)

· · ·
(

1 −
x

ϕ
(

ω
2

+ nα
)

)

,

t1 =
(

1 +
x

ϕ
(

ω
2

+ α
)

)(

1 +
x

ϕ
(

ω
2

+ 2α
)

)

· · ·
(

1 +
x

ϕ
(

ω
2

+ nα
)

)

in order to have 1 − c1 y = (1 − cx) t2

ρ
and 1 + c1 y = (1 + cx)

t2
1
ρ

.

In the same way, 1 ∓ e1iy = (1 − eix)
s2
1
ρ

, 1 ± e1iy = (1 + eix) s2

ρ
where

e1 = ± i

kϕ1(̟
2 i)

and

s =
(

1 −
x

ϕ
(

̟
2

i + α
)

)(

1 −
x

ϕ
(

̟
2

i + 2α
)

)

· · ·
(

1 −
x

ϕ
(

̟
2

i + nα
)

)

,

s1 =
(

1 +
x

ϕ
(

̟
2

i + α
)

)(

1 +
x

ϕ
(

̟
2

i + 2α
)

)

· · ·
(

1 +
x

ϕ
(

̟
2

i + nα
)

)

.

Thus

√

(1 − c2
1 y2)(1 + e2

1 y2) = ± tt1ss1

ρ2

√

(1 − c2x2)(1 + e2x2). Now dy = P

ρ2 dx

where P is a polynomial of degree 4n. Differentiating 1 − c1 y = (1 − cx) t2

ρ
, we see

that

P =
t

c1

(

ctρ − (1 − cx)

(

2ρ
dt

dx
− t

dρ

dx

))

is divisible by t and, in the same manner, it is divisible by t1, s and s1. Since these

four polynomials of degree n cannot have any common factor, it results that P
tt1ss1

is a constant a and that dy
√

(1−c2
1 y2)(1+e2

1 y2)
= ±a dx√

(1−c2x2)(1+e2x2)
. When x = 0,

t = t1 = s = s1 = 1 = ρ and P = dy

dx
= kψ ′(0) = kg.

According to (90), the coefficient of x2n+1 in R is − 1
ϕε·ϕ(ε+α)···ϕ(ε+nα)

and, com-

paring with (91) it is equal to − (−1)n

ϕ1ε

g

(ϕα·ϕ2α···ϕnα)2 . Thus

ϕ1ε =
(−1)ng

(ϕα · ϕ2α · · · ϕnα)2
ϕε · ϕ(ε + α) · · ·ϕ(ε + nα).
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Now (89) and (91) give two expressions for the limit of ψx

x
for x infinite:

1 and
g(−1)n

(ce)2n(ϕα · ϕ2α · · · ϕnα)4
.

Thus, by comparison, g = (−1)n(ec)2n(ϕαϕ2α · · · ϕnα)4 and

ϕ1ε = (ec)2n(ϕαϕ2α · · · ϕnα)2ϕεϕ(ε + α) · · · ϕ(ε + 2nα).

In particular

ϕ1

(ω

2

)

=
1

kc1

= (ec)2nδ2ϕ
(ω

2

)

ϕ
(ω

2
+ α

)

· · · ϕ
(ω

2
+ 2nα

)

,

ϕ1

(̟

2
i
)

=
±i

ke1

= (ec)2nδ2ϕ
(̟

2
i
)

ϕ
(̟

2
i + α

)

· · · ϕ
(̟

2
i + 2nα

)

where δ = ϕα · ϕ2α · · · ϕnαg The values (88) of the statement for 1
c1

and 1
e1

result

if we put f = k(e2c2)nδ2 and, as ϕ
(

ω
2

+ α
)

ϕ
(

̟
2

i + α
)

= i
ec

(cf. (76)), we obtain

c1e1 = ± (−1)n(ec)2n+1

f 2 . On the other hand

±
e1

c1

= (−1)n e

c
(ec)2n

(

ϕ
(ω

2
+ α

)

ϕ
(ω

2
+ 2α

)

· · · ϕ
(ω

2
+ nα

))4

,

±
c1

e1

= (−1)n c

e
(ec)2n

(

ϕ
(̟

2
i + α

)

ϕ
(̟

2
i + 2α

)

· · · ϕ
(̟

2
i + nα

))4

and a = kg = (−1)n f · δ2.

Using
(

ϕ
(

ω
2

+ α
))2 = 1

c2
1−c2ϕ2α

1+c2ϕ2α
and

(

ϕ
(

̟
2

i + α
))2 = − 1

e2
1+e2ϕ2α

1−e2ϕ2α
(cf. (76)),

one transforms the expressions of 1
c1

and 1
e1

in rational symmetric functions of ϕα,

ϕ2α, . . . , ϕnα. Reasoning as in his §V for the equation P2n+1 = 0, Abel deduces

that, when 2n + 1 is a prime number, c1 and e1 are determined by an equation of

degree 2n + 2 (the ‘modular equation’ as it was called later). Now such an equation

has roots not necessarily real and Abel says that the theory must be extended to the

case of moduli c, e complex numbers.

When c and e are real, the only values of α giving c1 and e1 real are 2mω
2n+1

and
2µ̟i

2n+1
. The first value gives

1

c1

=
f

c

(

ϕ

(

1

2n + 1

ω

2

)

ϕ

(

3

2n + 1

ω

2

)

· · · ϕ
(

2n − 1

2n + 1

ω

2

))2

,

e1

c1

= ±(−1)n e

c
(ec)2n

(

ϕ

(

1

2n + 1

ω

2

)

ϕ

(

3

2n + 1

ω

2

)

· · · ϕ
(

2n − 1

2n + 1

ω

2

))4

.

Abel explains in particular the case in which c = c1 = 1,±(−1)n = 1 and

0 < e < 1. Then e1 is very small when 2n + 1 is large. Abel carefully studies

the sign in (87). Since ρ2 is positive for x real, this sign is that of tt1ss1

√

1−x2

1−y2 .
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Now ss1 is easily seen to be positive and the sign we are looking for is that of

tt1 =
(

1 − x2

ϕ2
(

1
2n+1

ω
2

)

)(

1 − x2

ϕ2
(

3
2n+1

ω
2

)

)

· · ·
(

1 − x2

ϕ2
(

2n−1
2n+1

ω
2

)

)

for the radical is

positive. For instance, when −ϕ
(

1
2n+1

ω
2

)

≤ x ≤ ϕ
(

1
2n+1

ω
2

)

the sign is + and we

get (−1)na = 4n+2
ω

1
∫

0

dy
√

(1−y2)(1+e2
1 y2)

by doing x = ϕ
(

1
2n+1

ω
2

)

to which corresponds

y = (−1)n . If we neglect e2
1, this gives approximately (−1)na = (2n + 1)π

ω
and

x
∫

0

dx
√

(1 − x2)(1 + e2x2)
=

(−1)nω

(2n + 1)π
arcsin y

for y = (−1)n(2n + 1)π
ω

x

(

1− x2

ϕ2
(

ω
2n+1

)

)

···
(

1− x2

ϕ2
(

nω
2n+1

)

)

(

1+e2ϕ2
(

ω
2n+1

)

x2
)

···
(

1+e2ϕ2
(

nω
2n+1

)

x2
) . Abel also explains the

effect of the other real transformation α = 2µ̟i

2n+1
. He states that every possible

transformation is obtained by combining the transformations of order 2k studied by

Legendre with his new transformations. He will publish a proof of this statement in

his Précis d’une théorie des fonctions elliptiques (1829).

The last paragraph of the Recherches (p. 377–388) is devoted to the study of the

differential equation dy√
(1−y2)(1+µy2)

= a dx√
(1−x2)(1+µx2)

and, in particular to the cases

in which there is complex multiplication. Abel states two theorems: “I. Supposing

a real and the equation algebraically integrable, it is necessary that a be a rational

number.”

“II. Supposing a imaginary and the equation algebraically integrable, it is nec-

essary that a be of the form m ±
√

−1 ·
√

n where m and n are rational numbers.

In this case, the quantity µ is not arbitrary; it must satisfy an equation which has an

infinity of roots, real and imaginary. Each value of µ satisfy to the question.”

Here Abel only considers a particular case, that in which e1 = 1
e

for the first real

transformation. Thus we have

dy
√

(1 − y2)(1 + e2 y2)
= a

√
−1

dx
√

(1 − x2)(1 + e2x2)
(changing y in

ey

i
), (92)

where y = ±
√

−1en x

(

ϕ2
(

ω
2n+1

)

−x2
)

···
(

ϕ2
(

nω
2n+1

)

−x2
)

(

1+e2ϕ2
(

ω
2n+1

)

x2
)

···
(

1+e2ϕ2
(

nω
2n+1

)

x2
) , e being determined by

1 = en+1
(

ϕ
(

1
2n+1

ω
2

)

· · · ϕ
(

2n−1
2n+1

ω
2

))2
and a by a = ± 1

e

(

ϕ
(

ω
2n+1

)

···ϕ
(

nω
2n+1

)

ϕ
(

1
2n+1

ω
2

)

···ϕ
(

2n−1
2n+1

ω
2

)

)2

.

From (92), Abel deduces ̟
2

=
1
e
∫

0

dz√
(1+z2)(1−e2z2)

= a ω
4n+2

(integration from

x = 0 to x = ϕ
(

ω
4n+2

)

, y = z
√

−1) and ω
2

= a ̟
2

. Thus a =
√

2n + 1 = ω
̟

.

For instance, when n = 1, dy√
(1−y2)(1+e2 y2)

=
√

−3 dx√
(1−x2)(1+e2x2)

where
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y =
√

−1ex
ϕ2( ω

3 )−x2

1+e2ϕ2( ω
3 )x2 ,

1 = e2

(

ϕ

(

1

3

ω

2

))2

=
e2 − e2ϕ2

(

ω
3

)

1 + e2ϕ2
(

ω
3

) and a =
ϕ2

(

ω
3

)

ϕ2
(

ω
6

)

1

e
=

√
3.

This gives ϕ
(

ω
3

)

=
√

3
e

and e =
√

3+2, ϕ
(

ω
3

)

= 2
√

3−3. Changing x in x
√

2 −
√

3

and y in y
√

2 −
√

3
√

−1, Abel obtains dy√
1−2

√
3y2−y4

=
√

3 dx√
1+2

√
3x2−x4

where

y = x
√

3−x2

1+
√

3x2 .

For n = 2, dy√
(1−y2)(1+e2 y2)

=
√

−5 dx√
(1−x2)(1+e2x2)

where y =
√

−1e2x
ϕ2( ω

5 )−x2

1+e2ϕ2( ω
5 )x2

×
ϕ2

(

2ω
5

)

−x2

1+e2ϕ2
(

2ω
5

)

.x2
, 1 = e2ϕ2

(

ω
10

)

ϕ2
(

3ω
10

)

,
√

5 = e2ϕ2
(

ω
5

)

ϕ2
(

2ω
5

)

. Using ϕ2
(

ω
10

)

=

ϕ2
(

ω
2

− 2ω
5

)

=
f 2

(

2ω
5

)

F2
(

2ω
5

) and ϕ2
(

3ω
10

)

= ϕ2
(

ω
2

− ω
5

)

= f 2( ω
5 )

F2(ω
5 )

, Abel finally gets

− 1
e
√

e
= 1

e2

1−e
√

5

e−
√

5
, which gives a cubic equation for e:

e3 − 1 − (5 + 2
√

5)e(e − 1) = 0.

This equation has only one solution larger than 1, as e must be, e =
(√

5+1

2
+

√√
5+1

2

)2

.

It is then easy to compute α = ϕ
(

ω
5

)

and β = ϕ
(

2ω
5

)

for α2β2 =
√

5

e2 and

e3 − 1 − e(e − 1)
√

5 = e2(e + 1)(α2 + β2).

Changing x in x√
e

and y in y
√

−1√
e

, Abel obtains the equation

dy
√

1 − 4
√

2 +
√

5y2 − y4

=
√

5
dx

√

1 + 4
√

2 +
√

5x2 − x4

where y = x
√

5−
√

10+10
√

5x2+x4

1+
√

10+10
√

5x2+
√

5x4
.

For higher orders n Abel says that the equation giving the singular modu-

lus e is not necessarily algebraically solvable and he proposes an expansion of

e in infinite series. He starts from (86) with α = ω
2

, ϕ
(

ω
2

)

= 1
c

= 1 and

gets eω = 4π
(

ρ

ρ2+1
+ ρ3

ρ6+1
+ ρ5

ρ10+1
+ . . .

)

where ρ = h
̟
ω

π
2 . With α = ̟

2
i,

ϕ
(

̟
2

i
)

= i
e
, Abel gets ̟ = 4π

(

r

r2+1
+ r3

r6+1
+ r5

r10+1
+ . . .

)

where r = h
ω
̟

π
2

and, since ω
̟

=
√

2n + 1, ω = 4π
√

2n + 1

(

h
π
2

√
2n+1

hπ
√

2n+1+1
+ h

3π
2

√
2n+1

h3π
√

2n+1+1
+ . . .

)

and

e = 4π
ω

(

h

π
2

1√
2n+1

h

π√
2n+1 +1

+ h

3π
2

1√
2n+1

h

3π√
2n+1 +1

+ . . .

)

.
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At the end of this memoir, Abel explains how his theory of transformation gives

the formulae published by Jacobi in 1827. Jacobi uses Legendre’s notations, with

a modulus k between 0 and 1 and the elliptic integral of the first kind F(k, θ) =
θ
∫

0

dθ√
1−k2 sin2 θ

, so that if α = F(k, θ), ϕα = sin θ where ϕ is Abel’s elliptic function

with c = 1 and e2 = −k2. Writing c1 = 1, e2
1 = −λ2, µ = (−1)n

a
, x = (−1)n sin θ,

y = sin ψ and 2n + 1 = p, Abel’s formula for the first real transformation takes the

form
∫

dθ√
1−k2 sin2 θ

= ±µ
∫

dψ√
1−λ2 sin2 ψ

+ C, where

λ = k2n+1(sin θ ′ · sin θ ′′′ . . . sin θ(2n−1))4, µ =
(

sin θ ′ · sin θ ′′′ · · · sin θ(2n−1)

sin θ ′′ · sin θ ′′′′ · · · sin θ(2n)

)2

and sin ψ = k
n+ 1

2√
λ

sin θ (sin2 θ ′′−sin2 θ)(sin2 θ ′′′′−sin2 θ)...(sin2 θ(2n)−sin2 θ)

(1−k2 sin2 θ ′′·sin2 θ)(1−k2 sin2 θ ′′′′·sin2 θ)...(1−k2 sin2 θ(2n)·sin2 θ)
, the an-

gles θ ′, θ ′′, . . . , θ(2n) being defined by sin θ(m) = ϕ
(

m
p

ω
2

)

or F(k, θ(m)) = m
p

ω
2

. Since

c = c1 = 1,
√

1−y

1+y
= t

t1

√

1−x
1+x

or
√

1−sin ψ

1+sin ψ
=

√

1−(−1)n sin θ

1+(−1)n sin θ
sin θ ′−sin θ
sin θ ′+sin θ

sin θ ′′′+sin θ
sin θ ′′′−sin θ

. . .

sin θ(2n−1)+(−1)n sin θ

sin θ(2n−1)−(−1)n sin θ
, relation which may be transformed in

tan

(

45◦ −
1

2
ψ

)

=
tan 1

2
(θ ′ − θ)

tan 1
2
(θ ′ + θ)

.
tan 1

2
(θ ′′′ + θ)

tan 1
2
(θ ′′′ − θ)

. . .

×
tan 1

2
(θ(2n−1) + (−1)nθ)

tan 1
2
(θ(2n−1) − (−1)nθ)

tan

(

45◦ − (−1)n 1

2
θ

)

.

In 1828, Abel had begun the redaction of a second memoir to continue the

Recherches sur les fonctions elliptiques (Œuvres, t. II, p. 244–253). Putting α =
(m+µ)ω+(m−µ)̟i

2n+1
where m, µ and n are integers such that m + µ, m − µ and 2n + 1

have no common divisor, and

ϕ1θ = ϕθ · ϕ(α + θ)ϕ(α − θ)ϕ(2α + θ)ϕ(2α − θ) · · · ϕ(nα + θ)ϕ(nα − θ)

= ϕθ
ϕ2α − ϕ2θ

1 + e2c2ϕ2α · ϕ2θ

ϕ22α − ϕ2θ

1 + e2c2ϕ22α · ϕ2θ
· · ·

ϕ2nα − ϕ2θ

1 + e2c2ϕ2nα · ϕ2θ
,

Abel remarks that this function is rational in ϕθ and invariant by θ 
→ θ ± α. It

results that the roots of the equation

0 = x(ϕ2α − x2)(ϕ22α − x2) · · · (ϕ2nα − x2)

−ϕ1θ(1 + e2c2ϕ2αx2)(1 + e2c2ϕ22αx2) · · · (1 + e2c2ϕ2nαx2)

are ϕθ, ϕ(θ + α), . . . , ϕ(θ + 2nα). Now let ψθ be a rational function of these roots

and suppose that it is invariant by θ → θ + α. Using the addition theorem (73), one

sees that

ψθ = ψ1θ + ψ2θ · fθ · Fθ
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where ψ1θ and ψ2θ are rational in ϕθ and ψ1θ = 1
2
(ψθ + ′ψθ), ψ2θ · fθ · Fθ =

1
2
(ψθ − ′ψθ) where ′ψθ is the function deduced from ψθ by changing α into −α.

One has ′ψθ = ψ1θ − ψ2θ · fθ · Fθ and ′ψθ is invariant by θ 
→ θ + α. Thus

ψ1θ is invariant by θ 
→ θ + α and it is thus a rational symmetric function of ϕθ,

ϕ(θ + α), . . . , ϕ(θ + 2nα), that is a rational function of ϕ1θ. In the same way, one

shows that the square of ψ2θ fθFθ is a rational function of ϕ1θ, so that ψθ = p±
√

q′

where p, q′ are rational functions of ϕ1θ. Let

χθ = (ϕθ)2ϕ(θ + α) + (ϕ(θ + α))2ϕ(θ + 2α) + . . .

+(ϕ(θ + (2n − 1)α))2ϕ(θ + 2nα) + (ϕ(θ + 2nα))2ϕθ

and let ′χθ be the function deduced from χθ by changing α into −α. One has

χθ = χ1θ + χ2θ · fθ · Fθ, ′χθ = χ1θ − χ2θ · fθ · Fθ

where χ1θ and χ2θ are rational functions of ϕθ, and 1
2
(χθ − ′χθ) = χ2θ · fθ · Fθ =

±
√

r where r is a rational function of ϕ1θ. Now
ψθ

2

χθ
2

= ψθ−′ψθ

χθ−′χθ
is a rational function of

ϕθ invariant by θ → θ+α, so a rational function q of ϕ1θ and 1
2
(ψθ−′ψθ) = ±q

√
r,

ψθ = p ± q
√

r where r does not depend of the function ψθ.

Abel proves that r is a polynomial in ϕ1θ, for if it had a pole ϕ1δ, we should

have χδ − ′χδ = 1
0

which means that some ϕ(δ ± να) would be infinite, but then

ϕ1δ would also be infinite, which is absurd. The expansions of our functions in

decreasing powers of x = ϕθ are ϕ1θ = ax +ε, χθ −′χθ = Ax2 +ε′ where a, A are

constant and ε and ε′ contain powers of x respectively less than 1 and 2. If ν is the

degree of r, the equation r = 1
4
(χθ − ′χθ)2 is rewritten a′xν + . . . = 1

4
A2x4 + . . .

and it shows that ν = 4. Since r must be annihilated by θ = ±ω
2
,±̟

2
i, one has

r = C

(

1 −
(

ϕ1θ

ϕ1
ω
2

)2
)(

1 −
(

ϕ1θ

ϕ1
̟
2 i

)2
)

where C is a constant.

When ψθ is a polynomial in ϕθ, ϕ(θ + α), . . . , ϕ(θ + 2nα), the same rea-

soning shows that p and q are polynomials in ϕ1θ of respective degrees ν and

ν − 2 where ν is the degree of ψθ with respect to any one of the quantities ϕθ,

ϕ(θ + α), . . . , ϕ(θ + 2nα). If ν = 1, one has ψθ = A + Bϕ1θ where A and B are

constants respectively determined by making θ = 0 and θ = 1
0
. For instance, let us

put πθ = ϕθ · ϕ(θ + ν1α)ϕ(θ + ν2α) . . . ϕ(θ + νωα) and

P = π(θ) + π(θ + α) + π(θ + 2α) + . . . + π(θ + 2nα)

where ν1, ν2, . . . , νω are distinct integers less than 2n + 1. One has A = π(α) +
π(2α) + . . . + π(2nα) and B is the derivative of P for θ = 0. When ω is odd (resp.

even), B (resp. A) is equal to 0, for instance ω = 0 gives

ϕθ + ϕ(θ + α) + ϕ(θ + 2α) + . . . + ϕ(θ + 2nα) = Bϕ1θ

and ω = 1 gives

ϕθ · ϕ(θ + α) + ϕ(θ + α)ϕ(θ + 2α) + . . . + ϕ(θ + 2nα)ϕθ

= ϕα · ϕ2α + ϕ2α · ϕ3α + . . . + ϕ(2n − 1)α · ϕ2nα.
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The second paragraph is not very explicit; Abel considers the functions

ψθ =
2n

∑

k=0

δkµϕ(θ + kα),ψ1θ =
2n

∑

k=0

δ−kµϕ(θ + kα)

where δ is a primitive (2n+1)-th root of 1. Since ψ(θ+α) = δ2nµψθ and ψ1(θ+α) =
δ−2nµψ1θ, the product ψθ · ψ1θ is invariant by θ 
→ θ + α. It is an even polynomial

in the transformed elliptic integral y = ϕ1(aθ), of the form A(y2 − f 2) where

f = ϕ1

(

a m̟i
2n+1

)

. Thus this product is 0 when θ = m̟i
2n+1

and this gives a remarkable

identity

0 = ϕ

(

m̟i

2n + 1

)

+ δµϕ

(

m̟i

2n + 1
+ α

)

+ δ2µϕ

(

m̟i

2n + 1
+ 2α

)

+ . . .

+δ2nµϕ

(

m̟i

2n + 1
+ 2nα

)

for a convenient m. Abel has announced this type of identity in the introduction of

the Précis d’une théorie des fonctions elliptiques, published in 1829 (see our §8);

Sylow and Kronecker have proposed proofs for them.

7 Development of the Theory of Transformation

of Elliptic Functions

The theory of transformation and of complex multiplication was developed by Abel in

the paper Solution d’un problème général concernant la transformation des fonctions

elliptiques (Astronomische Nachrichten (6) 138 and (7) 147, 1828; Œuvres, t. I, p.

403–443), published in the Journal where Jacobi had announced the formulae for

transformation. Abel deals with the following problem: “To find all the possible

cases in which the differential equation

dy
√

(1 − c2
1 y2)(1 − e2

1 y2)

= ±a
dx

√

(1 − c2x2)(1 − e2x2)
(93)

may be satisfied by putting for y an algebraic function of x, rational or irrational.”

He explains that the problem may be reduced to the case in which y is a rational

function of x and he begins by solving this case. His notations are x = λθ when

θ =
∫

0

dx√
(1−c2x2)(1−e2x2)

, ∆θ =
√

(1 − c2x2)(1 − e2x2), ω
2

=
1
c
∫

0

dx√
(1−c2x2)(1−e2x2)

,

ω′
2

=
1
e
∫

0

dx√
(1−c2x2)(1−e2x2)

where e and c may be complex numbers. Abel recalls the

addition theorem λ(θ±θ ′) = λθ·∆θ ′±λθ ′·∆θ

1−c2e2λ2θ·λ2θ ′ and the solution of the equation λθ ′ = λθ,

which is θ ′ = (−1)m+m′
θ +mω+m′ω′. Let y = ψ(x) be the rational function we are
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looking for and x = λθ, x1 = λθ1 two solutions of the equation y = ψ(x), y being

given (it is supposed that this equation is not of the first degree). From the equation
dy√

R
= ±adθ = ±adθ1, we deduce dθ1 = ±dθ. Thus θ1 = α ± θ where α is constant

and x1 = λ(α ± θ), where we may choose the sign +, for λ(α − θ) = λ(ω − α + θ).

Now y = ψ(λθ) = ψ(λ(θ + α)) = ψ(λ(θ + 2α)) = . . . = ψ(λ(θ + kα)) for any

integer k. As the equation y = ψ(x) has only a finite number of roots, there exist

k and k′ distinct such that λ(θ + kα) = λ(θ + k′α) or λ(θ + nα) = λθ where

n = k − k′ (supposed to be positive). Then θ + nα = (−1)m+m′
θ + mω + m′ω′ and,

necessarily, (−1)m+m′ = 1, nα = mω + m′ω′ or α = µω + µ′ω′ where µ,µ′ are

rational numbers. If the equation y = ψ(x) has roots other than λ(θ + kα), any one

of them has the form λ(θ + α1) where α1 = µ1ω + µ′
1ω

′ (µ1, µ
′
1 rational) and all

the λ(θ + kα + k1α1) are roots of the equation. Continuing in this way, Abel finds

that the roots of y = ψ(x) are of the form

x = λ(θ + k1α1 + k2α2 + . . . + kναν)

where k1, k2, . . . , kν are integers and α1, α2, . . . , αν of the form µω + µ′ω′ (µ,µ′

rational). The problem is to determine y in function of θ, the quantities α1, α2, . . . , αν

being given.

Before the solution of this problem, Abel deals with the case in which y =
f ′+ fx

g′+gx
. In this case 1 ± c1 y = g′±c1 f ′+(g±c1 f )x

g′+gx
, 1 ± e1 y = g′±e1 f ′+(g±e1 f )x

g′+gx
and

dy = fg′− f ′g
(g′+gx)2 dx so that the differential equation (93) takes the form

fg′ − f ′g
√

(g′2 − c2
1 f ′2)(g′2 − e2

1 f ′2)

×
dx

√

(

1 + g+c1 f

g′+c1 f ′ x
)(

1 + g−c1 f

g′−c1 f ′ x
)(

1 + g+e1 f

g′+e1 f ′ x
) (

1 + g−e1 f

g′−e1 f ′ x
)

= ±a
dx

√

(1 − c2x2)(1 − e2x2)
.

The solutions are y = ax, c2
1 = c2

a2 , e2
1 = e2

a2 ; y = a
ec

1
x
, c2

1 = c2

a2 , e2
1 = e2

a2 ;

y = m
1−x

√
ec

1+x
√

ec
, c1 = 1

m

√
c−

√
e√

c+
√

e
, e1 = 1

m

√
c+

√
e√

c−
√

e
, a = m

√
−1

2
(c − e).

In order to deal with the general case, in which the solutions of y = ψ(x) are

λθ, λ(θ + α1), . . . , λ(θ + αm−1),

Abel writes ψ(x) = p

q
where p and q are polynomials of degree m in x, with

respective dominant coefficients f and g. The equation y = ψ(x) is rewritten

p − qy = ( f − gy)(x − λθ)(x − λ(θ + α1)) . . . (x − λ(θ + αm−1)). (94)

If f ′ and g′ are the respective coefficients of xm−1 in p and q, we see that
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f ′ − g′y = −( f − gy)(λθ + λ(θ + α1) + . . . + λ(θ + αm−1))

and y = f ′+ f ·ϕθ

g′+g·ϕθ
where ϕθ = λθ + λ(θ + α1) + . . . + λ(θ + αm−1). It remains to

express ϕθ rationally in function of x with the help of the addition theorem and to

determine f, f ′, g, g′, e1, c1 and a in order that (93) be satisfied. For some α j , it is

possible that λ(θ −α j) = λ(θ +α j) or λ(θ +2α j) = λθ. Then α j = m
2
ω+ m′

2
ω′ with

m +m′ even and the distinct values of λ(θ +α j) are λθ = x, λ(θ +ω) = −λθ = −x,

λ
(

θ + ω
2

+ ω′
2

)

= − 1
ec

1
λθ

= − 1
ec

1
x
, λ

(

θ + 3ω
2

+ ω′
2

)

= − 1
ec

1
λ(θ+ω)

= 1
ec

1
x
. For the

other λ(θ − α j) �= λ(θ + α j), so it is a root of the equation y = ψ(x), of the form

λ(θ + α j′) and we have λ(θ + α j) + λ(θ − α j) = 2x∆α j

1−e2c2λ2α j x2 . Thus

ϕθ = λθ + kλ(θ + ω) + k′λ

(

θ +
ω

2
+

ω′

2

)

+ k′′λ

(

θ +
3ω

2
+

ω′

2

)

+λ(θ + α1) + λ(θ − α1) + . . . + λ(θ + αn) + λ(θ − αn)

= (1 − k)x +
k′′ − k′

ec

1

x
+

∑ 2x∆α j

1 − e2c2λ2α j · x2

where k, k′, k′′ are equal to 0 or 1.

In the first case considered by Abel, k = k′ = k′′ = 0. Let δ, δ′, ε, ε′ be the

values of θ respectively corresponding to y = 1
c1

,− 1
c1

, 1
e1

,− 1
e1

. One has 1 − c1 y =
g′−c1 f ′

r

(

1 − ϕθ

ϕδ

)

, 1 + c1 y = g′+c1 f ′

r

(

1 − ϕθ

ϕδ′

)

, 1 − e1 y = g′−e1 f ′

r

(

1 − ϕθ

ϕε

)

and

1 + e1 y = g′+e1 f ′

r

(

1 − ϕθ

ϕε′

)

where r = g′ + g · ϕθ. From the expression of ϕθ, one

gets 1 − ϕθ

ϕδ
= 1+A1x+A2x2+...+A2n+1x2n+1

(1−e2c2λ2α1·x2)(1−e2c2λ2α2·x2)...(1−e2c2λ2αn ·x2)
, which must be annihilated

by θ = δ, δ ± α1, . . . , δ ± αn (δ arbitrary). Thus

1 + A1x + . . . + A2n+1x2n+1 =
(

1 −
x

λδ

)

(

1 −
x

λ(δ + α1)

)(

1 −
x

λ(δ − α1)

)

. . .

×
(

1 −
x

λ(δ + αn)

)(

1 −
x

λ(δ − αn)

)

.

The differential equation (93) is written

√

(1 − c2
1 y2)(1 − e2

1 y2) =
1

a

dy

dx

√

(1 − c2x2)(1 − e2x2)

and it shows that when x = ± 1
c
,± 1

e
or θ = ±ω

2
,±ω′

2
, the left hand side is 0. Thus,

for instance, δ = ω
2

, δ′ = −ω
2

, ε = ω′
2

, ε′ = −ω′
2

and g′ = c1 fϕ
(

ω
2

)

= e1 fϕ
(

ω′
2

)

,

f ′ = g

c1
ϕ

(

ω
2

)

= g

e1
ϕ

(

ω′
2

)

. A solution of this system is g = f ′ = 0, f

g′ = 1
k
,

c1 = k

ϕ(ω
2 )

, e1 = k

ϕ
(

ω′
2

) where k is arbitrary. Then y = 1
k
ϕθ and 1 − ϕθ

ϕ(ω
2 )

=

1
ρ
(1 − cx)

(

1 − x

λ( ω
2 −α1)

)2 (

1 − x

λ( ω
2 −α2)

)2

. . .
(

1 − x

λ( ω
2 −αn)

)2

where
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ρ = (1 − e2c2λ2α1 · x2)(1 − e2c2λ2α2 · x2) . . . (1 − e2c2λ2αn · x2).

We obtain similar expressions for 1+ ϕθ

ϕ(ω
2 )

and for 1± ϕθ

ϕ
(

ω′
2

) and, as in the Recherches,

1 − c2
1 y2 = (1 − c2x2)

t2

ρ2
, 1 − e2

1 y2 = (1 − e2x2)
t ′2

ρ2

where

t =
(

1 −
x2

λ2
(

ω
2

− α1

)

)(

1 −
x2

λ2
(

ω
2

− α2

)

)

. . .

(

1 −
x2

λ2
(

ω
2

− αn

)

)

,

t ′ =



1 −
x2

λ2
(

ω′
2

− α1

)







1 −
x2

λ2
(

ω′
2

− α2

)



 . . .



1 −
x2

λ2
(

ω′
2

− αn

)



 .

Thus

√

(1 − c2
1 y2)(1 − e2

1 y2) = ± tt′

ρ2

√

(1 − c2x2)(1 − e2x2) and Abel shows, as in

the Recherches, that
ρ2 dy

dx

tt′ is a constant a, so that the desired result is obtained.

The value of a is computed by comparing the limit values of dy

dx
for x infinite

coming from dy

dx
= a tt′

ρ2 and from y = 1
k

(

x + 2x
∑ ∆(α)

1−e2c2λ2α·x2

)

. Abel finds a =
(e2c2)n 1

k
λ4α1 · λ4α2 . . . λ4αn . He gives some other forms for y, as

y = a
x

(

1 − x2

λ2α1

)(

1 − x2

λ2α2

)

. . .
(

1 − x2

λ2αn

)

(1 − e2c2λ2α1 · x2)(1 − e2c2λ2α2 · x2) . . . (1 − e2c2λ2αn · x2)

=
1

k
(ec)2nbλθ · λ(α1 + θ)λ(α1 − θ) . . . λ(αn + θ)λ(αn − θ)

where b = λ2α1 · λ2α2 . . . λ2αn . Doing θ = ω
2

and θ = ω′
2

, he obtains

1

c1

= (−1)n b

k
e2nc2n−1

(

λ
(ω

2
− α1

)

λ
(ω

2
− α2

)

. . . λ
(ω

2
− αn

))2

and

1

e1

= (−1)n b

k
e2n−1c2n

(

λ

(

ω′

2
− α1

)

λ

(

ω′

2
− α2

)

. . . λ

(

ω′

2
− αn

))2

.

As Abel remarks, the transformation defined by Jacobi corresponds to the case

in which α1 = 2ω
2n+1

, c = c1 = 1 and the theory explained in the Recherches to the

case in which

α1 =
mω + m′ω′

2n + 1

with m+m′ even, m, m′ and 2n+1 having no common factor. In both cases, α2 = 2α1,

α3 = 3α1, . . . , αn = nαn . Jacobi independently found these transformations. The
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more general transformation y = f ′+ f ·ϕθ

g′+g·ϕθ
is obtained by composing this particular

one with a transformation of the type y = f ′+ fx

g′+gx
.

A second case considered by Abel is that in which k = 0 and k′ or k′′ is equal

to 1. It is impossible that k′ = k′′ = 1 for if λ
(

θ + ω
2

+ ω′
2

)

and λ
(

θ + 3ω
2

+ ω′
2

)

are roots of y = ψ(x), so is λ
(

θ + 3ω
2

+ ω′
2

− ω+ω′
2

)

= λ(θ + ω) and k is not 0. As

in the first case, let 1 − c1 y = 0 for x = 1
c
. Then 1 ± c1 y = g′±c1 f ′

r

(

1 − ϕθ

ϕ(ω
2 )

)

,

1 − c2
1 y2 = g′2−c2

1 f ′2

r2

(

1 −
(

ϕθ

ϕ(ω
2 )

)2
)

and

1 −
ϕθ

ϕδ
= −

1

ϕδ · ρ

(

1−
x

λδ

)

(

1−
x

λ(δ + β)

)(

1−
x

λ(δ + α1)

)(

1−
x

λ(δ − α1)

)

× · · ·
(

1 −
x

λ(δ + αn)

)(

1 −
x

λ(δ − αn)

)

(95)

where β = ω+ω′
2

(resp. 3ω+ω′
2

) if k′ = 1 (resp. k′′ = 1) and

ρ = ±ecx(1 − e2c2λ2α1 · x2)(1 − e2c2λ2α2 · x2) . . . (1 − e2c2λ2αn · x2).

Abel takes δ = ±ω
2

in order to compute 1 − c2
1 y2 and he finds

√

1 − c2
1 y2 =

√

c2
1 f ′2 − g′2

ϕ
(

ω
2

)

rρ
t
√

(1 − c2x2)(1 − e2x2).

Now it results from (93) that

√

1 − e2
1 y2 = ϕ(ω

2 )

a

√

c2
1 f ′2−g′2

rρ

t

dy

dx
is a rational function

of x. If we impose that 1 − e2
1 y2 be annihilated by x = ±λ

(

ω−β

2

)

, we effectively

find

√

1 − e2
1 y2 =

√

e2
1 f ′2 − g′2

ϕ
(

ω−β

2

)

rρ



1 −
x2

λ2
(

ω−β

2

)







1 −
x2

λ2
(

ω−β

2
− α1

)



 . . .

×



1 −
x2

λ2
(

ω−β

2
− αn

)





by doing δ = ±ω−β

2
in the relation (95). Then we find that g′ = c1 f · ϕ

(

ω
2

)

=
e1 f ·ϕ

(

ω−β

2

)

, f ′ = g

c1
ϕ

(

ω
2

)

= g

e1
ϕ

(

ω−β

2

)

. A solution is f = g′ = 0, f

g′ = ϕ(ω
2 )

c1
=

ϕ
(

ω−β
2

)

e1
, which gives c1 = kϕ

(

ω
2

)

, e1 = kϕ
(

ω−β

2

)

, y = 1
kϕθ

, a = ± ec
k

. Other

solutions are obtained by composing with a transformation of the type y = f ′+ fx

g′+gx
.



132 C. Houzel

In the simplest case where n = 0 and c1 = c = 1, β = 3ω
2

+ ω′
2

, the formulae are

y = (1 + e) x

1+ex2 , e1 = 2
√

e

1+e
and a = 1 + e.

In the third case, k = 1 and one finds that ϕθ = ϕ(θ + ω) = −ϕθ so that

ϕθ = 0. Let us return to (94), denoting by 1
2

f ′ (resp. 1
2
g′) the coefficient of xm−2 in

p (resp. q) and by Fθ the function λ2θ + λ2(θ + α1) + . . . + λ2(θ + αm−1). We have

f ′ − g′y = −( f − gy)Fθ and y = f ′+ f ·Fθ

g′+g·Fθ
and we may proceed as in the preceding

cases with Fθ in place of ϕθ.

Abel states the general theorem for the first real transformation of arbitrary

order n:

dy
√

(1 − y2)(1 − e2
1 y2)

= ±
adx

√

(1 − x2)(1 − e2x2)
(96)

where a = kλω
n
·λ 2ω

n
. . . λ (n−1)ω

n
, e1 = en

(

λ ω
2n

· λ 3ω
2n

. . . λ
(

n − 1
2

)

ω
n

)2
, 1 = kλ ω

2n
·λ 3ω

2n

× . . . λ
(

n − 1
2

)

ω
n

and y = kλθ · λ
(

θ + ω
n

)

λ
(

θ + 2ω
n

)

. . . λ
(

θ + (n−1)ω

n

)

.

With Legendre’s notation x = sin ϕ, y = sin ψ and n very large, e1 be-

comes negligible and Abel writes, with an approximation ψ = a
ϕ
∫

0

dϕ√
1−e2 sin2 ϕ

=

n−1
∑

m=0

arctan
(

tan ϕ

√

1 − e2λ2
(

mω
n

)

)

. For ϕ = π
2

, ψ = n π
2

= a ω
2

, so that 1
a

= 1
π

ω
n

and

passing to the limit for n infinite, Abel finds

ϕ
∫

0

dϕ
√

1 − e2 sin2 ϕ
=

1

π

ω
∫

0

arctan
(

tan ϕ
√

1 − e2λ2x
)

dx.

The order of the transformation, that is the degree m of the equation p − qy = 0

is the number of distinct values of λ(θ + k1α1 + . . . + kναν) and Abel shows that

m = n1n2 . . . nν where, for each j, n j is the smallest strictly positive integer such

that λ(θ + n jα j) = λ(θ + m1α1 + . . . + m j−1α j−1) for some m1, . . . , m j−1. Thus,

when m is a prime number, ν = 1 and m = n1. Abel states some theorems:

a) when the order of a transformation is a composite number mn, this trans-

formation may be obtained by the composition of a transformation of order m and

a transformation of order n;

b) the equation y = ψ(x) is algebraically solvable and its roots x are rational

functions of y and some radicals r
1

n1
1 , r

1
n2
2 , . . . , r

1
nν
ν where n1, n2, . . . , nν are prime

numbers, n1n2 · · · nν is the degree of the equation and r1, r2, . . . , rν have the form

ζ + t

√

(1 − c2
1 y2)(1 − e2

1 y2) with ζ and t rational in y;

c) If the differential equation dy√
(1−c2 y2)(1−e2 y2)

= a dx√
(1−c2x2)(1−e2x2)

has a so-

lution algebraic in x and y, a = µ′ +
√

−µ where µ′, µ are rational numbers and

µ ≥ 0. There is an infinity of values for the moduli e, c, given by algebraic equations

solvable by radicals, for which µ > 0.
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Recall that in the Recherches Abel doubted that these equations might be alge-

braically solvable. Kronecker (1857) gave a proof that they are solvable by radicals,

as Abel states here.

d) If the differential equation dy√
(1−y2)(1−b2 y2)

= a dx√
(1−x2)(1−c2x2)

where b2 =

1−c2 has a solution algebraic in x and y, a =
√

µ+µ′√−1 where µ,µ′ are rational

numbers and µ ≥ 0. In particular, when a is real, it is the square root of a positive

rational number. Thus, when e2
1 = 1 − e2 in (96), a =

√
n. Indeed the formula for k

gives y = 1 when θ = ω
2n

, thus

1
∫

0

dy
√

(1 − y2)(1 − e2
1 y2)

=
aω

2n
.

One may write y = kλθ·λ
(

ω
n

− θ
)

λ
(

2ω
n

− θ
)

. . . λ
(

(n−1)ω

n
− θ

)

because λ
(

θ + mω
n

)

= λ
(

(n−m)ω

n
− θ

)

, so that y2 = k2x2 λ2 ω
n −x2

1−e2λ2 ω
n x2 . . .

λ2 (n−1)ω
n −x2

1−e2λ2 (n−1)ω
n x2

. Now putting

x = p
√

−1 and y = z
√

−1 and letting p and z tend towards infinity, Abel ob-

tains ω
2

= a
1
∫

0

dy
√

(1−y2)(1−e2
1 y2)

= a aω
2n

, whence a =
√

n.

In the part of this memoir published in 1829, Abel gives another study of the

same transformation in the case in which 0 < c, c1 < 1 and e = e1 = 1. Then ω
2

=
1
∫

0

dx√
(1−x2)(1−c2x2)

is real but ω′
2

=
1
c
∫

0

dx√
(1−x2)(1−c2x2)

= ω
2

√
−1

1
c
∫

1

dx√
(1−x2)(1−c2x2)

=

ω
2

√
−1̟

2
, where ̟

2
=

1
∫

0

dx√
(1−x2)(1−b2x2)

, b =
√

1 − c2, is complex. Let us suppose

that the differential equation

dy
√

(1 − y2)(1 − c2
1 y2)

= a
dx

√

(1 − x2)(1 − c2x2)
(97)

has a solution f(y, x) = 0 algebraic in x and y and define the function y = λ1θ
′ by

dy
√

(1 − y2)(1 − c2
1 y2)

= dθ ′ and λ1(0) = 0.

The equation (97) takes the form dθ ′ = adθ, so that θ ′ = ε + aθ where ε is constant

and y = λ1(ε + aθ). Thus f(λ1(ε + aθ), λθ) = 0 identically in θ. This implies that

f(λ1(ε+2maω+aθ), λθ) = f(λ1(ε+ma̟i +aθ)λθ) for any integer m. Then there

exists pairs of distinct integers (k, k′) and (ν, ν′) such that

λ1(ε + 2k′aω + aθ) = λ1(ε + 2kaω + aθ) and

λ1(ε + ν′a̟i + aθ) = λ1(ε + νa̟i + aθ)
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or 2k′aω = 2kaω + 2mω1 + m′̟
√

−1, ν′a̟i = νa̟i + 2µω1 + µ′̟
√

−1

where m, m′, µ,µ′ are integers, ω1
2

=
1
∫

0

dx
√

(1−x2)(1−c2
1x2)

, ̟1
2

1
∫

0

dx
√

(1−x2)(1−b2
1x2)

,

b1 =
√

1 − c2
1. From these relations we draw a = m

ν

ω1
ω

+ m′
2ν

̟1
ω

√
−1 =

µ′

ν′
̟1
̟

− 2µ

ν′
ω1
̟

√
−1 and m

ν

ω1
ω

= µ′

ν′
̟1
̟

, m′
2ν

̟1
ω

= − 2µ

ν′
ω1
̟

. Thus ω2

̟2 = − 1
4

mm′
µµ′

ν′2

ν2

and
ω2

1

̟2
1

= − 1
4

m′µ′

mµ
. As ω2

̟2 is a continuous function of c, these equations can

be satisfied for any c, c1 only if m′ = µ = 0 or if m = µ′ = 0. In the

first case we have a = m
ν

ω1
ω

= µ′

ν′
̟1
̟

, ω1
̟1

= νµ′

ν′m
ω
̟

and in the second case

a = m′
2ν

̟1
ω

√
−1 = − 2µ

ν′
ω1
̟

√
−1, ω1

̟1
= − 1

4
m′ν′
µν

̟
ω

. Abel states that if (97) has

a solution algebraic in x and y, then either ω1
̟1

or ̟1
ω1

has a rational ratio to ω
̟

. In the

first case a = δ
ω1
ω

and in the second case a = δ
̟1
ω

√
−1, with δ rational. Both ratios

k, k′ are rational for certain particular values of c, c1, determined by ̟
ω

=
√

kk′,

̟1
ω1

=
√

k′
k

and in these cases a = δ
ω1
ω

+ δ′ ̟1
ω

√
−1 with δ, δ′ rational.

In order to prove that these conditions are sufficient for the existence of an

algebraic solution to the equation (97), Abel observes that λα = f
(

bω
2

− bα
)

where

fα =
√

1 − x2 is the function introduced in the Recherches. The expansion of fα in

simple infinite product then gives

λα = A
(1 − t2)(1 − t2r2)(1 − t−2r2)(1 − t2r4)(1 − t−2r4) . . .

(1 + t2)(1 + t2r2)(1 + t−2r2)(1 + t2r4)(1 + t−2r4) . . .

= Aψ
(

α
π

̟

)

ψ(ω+α)
π

̟
ψ(ω−α)

π

̟
ψ(2ω+α)

π

̟
ψ(2ω−α)

π

̟
. . . (98)

where A is independent from α, t = e− απ
̟ , r = e− ω

̟ π and ψ(x) = 1−e−2x

1+e−2x . From this

formula we draw

λθ · λ
(

θ +
ω

n

)

λ

(

θ +
2ω

n

)

. . . λ

(

θ +
n − 1

n
ω

)

= Anψδ
π

̟1

· ψ(ω1 + δ)
π

̟1

ψ(ω1 − δ)
π

̟1

ψ(2ω1 + δ)
π

̟1

. . .

where δ = ̟1
̟

θ and ω1
̟1

= 1
n

ω
̟

. On the other hand

λ1α = A1ψ

(

α
π

̟1

)

ψ(ω1 + α)
π

̟1

· ψ(ω1 − α)
π

̟1

. . .

and, by comparison, we conclude that λ1

(

̟1
̟

θ
)

= A1
An λθ · λ

(

θ + ω
n

)

λ
(

θ + 2ω
n

)

× . . . λ
(

θ + n−1
n

ω
)

= y, algebraic function of x = λθ such that dy
√

(1−y2)(1−c2
1 y2)

=
̟1
̟

dθ = ̟1
̟

dx√
(1−x2)(1−c2x2)

.

There are three cases to consider: a real, a purely imaginary and a complex with

̟
ω

=
√

kk′ and ̟1
ω1

=
√

k′
k

. In the first case, a = µ

ν

̟1
̟

and ω1
̟1

= m
n

ω
̟

where µ, ν, m, n
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are integers. The equation (97) is satisfied by x = λ(ν̟θ), y = λ1(µ̟1θ). Let c′

be a modulus such that ω′
̟ ′ = 1

n
ω
̟

, where ω′ and ̟ ′ are the periods corresponding

to c′. We have

λ′(µν̟ ′θ) =
A′

An
λ(µν̟θ)λ

(

µν̟θ +
ω

n

)

. . . λ

(

µν̟θ +
n − 1

n
ω

)

and since ω′
̟ ′ = 1

m

ω1
̟1

,

λ′(µν̟ ′θ) =
A′

Am
1

λ1(µν̟1θ)λ1

(

µν̟1θ +
ω1

m

)

· · · λ1

(

µν̟1θ +
m − 1

m
ω1

)

.

Finally

1

An
λ(µδ)λ

(

µδ +
ω

n

)

· · · λ
(

µδ +
n − 1

n
ω

)

=
1

Am
1

λ1(νδ1)λ1

(

νδ1 +
ω1

m

)

· · · λ1

(

νδ1 +
m − 1

m
ω1

)

(99)

where ν̟θ = δ and µ̟1θ = δ1. The left hand side is an algebraic function of

λ(µδ), so an algebraic function of x = λδ and, in the same way, the right hand side

is an algebraic function of y = λ1δ1. Thus we have an algebraic integral of (97). One

sees that A = 1√
c

and A1 = 1√
c1

. As an example, Abel explains the case in which

a = ̟1
̟

and ω1
̟1

= 2
3

ω
̟

; the equation (99) takes the form c
√

c·λ
(

δ + ω
3

)

λ
(

δ + 2ω
3

)

=

c1λ1δ1 · λ1

(

δ1 + ω1
2

)

or y

√
1−y2

√

1−c2
1 y2

= c
√

c

c1
x

λ2 ω
3 −x2

1−c2λ2 ω
3 x2 .

In the second case a = µ

ν

̟1
ω

√
−1 and ω1

̟1
= m

n
̟
ω

with µ, ν, m, n integers. Let us

put x = z
√

−1√
1−z2

so that dx√
(1−x2)(1−c2x2)

=
√

−1 dz√
(1−z2)(1−b2z2)

where b =
√

1 − c2.

The equation (97) takes the form dy
√

(1−y2)(1−c2
1 y2)

= µ

ν

̟1
ω

dz√
(1−z2)(1−b2z2)

and we are

reduced to the preceding case, with the algebraic integral (99) where z = λδ =
x√

x2−1
and ω replaced by ̟ . For instance if a = ̟1

ω

√
−1 and ω1

̟1
= 2̟

ω
, (99) is

written
√

b · λδ = c1λ1(δ1)λ1

(

δ1 + ω1
2

)

or y

√
1−y2

√

1−c2
1 y2

=
√

b

c1

x√
x2−1

.

In the third case a = µ

ν

̟1
̟

+ µ′

ν′
̟1
ω

√
−1 where µ, ν,µ′, ν′ are integers and

ω1
̟1

= k ω
̟

= 1
k′

̟
ω

where k, k′ are rational numbers. The two equations

dz
√

(1 − z2)(1 − c2
1z2)

=
µ

ν

̟1

ω

dx
√

(1 − x2)(1 − c2x2)
and

dv
√

(1 − v2)(1 − c2
1v

2)

=
µ′

ν′
̟1

ω

dx
√

(1 − x2)(1 − c2x2)

have algebraic integrals and our equation (97) may be written
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dy
√

(1 − y2)(1 − c2
1 y2)

=
dz

√

(1 − z2)(1 − c2
1z2)

+
dv

√

(1 − v2)(1 − c2
1v

2)

which is satisfied by y =
z

√

(1−v2)(1−c2
1v2)+v

√

(1−z2)(1−c2
1z2)

1−c2
1z2v2

, algebraic function of x.

Abel gives a translation of his general theorem in Legendre’s notations (which were

adopted by Jacobi).

The case where c1 = c corresponds to complex multiplication. Then a = m
ν

+
m′
2ν

̟
ω

√
−1 = µ′

ν′ − 2µ

ν′
ω
̟

√
−1 and m

ν
= µ′

ν′ , m′
2ν

̟
ω

= − 2µ

ν′
ω
̟

. The multiplicator a is

real if m′ = µ = 0 but otherwise we must impose ω
̟

= 1
2

√

−m′ν′
µν

=
√

k where k is

positive rational and we have a = δ + δ′√k
√

−1 where δ, δ′ are rational numbers.

Doing α = ω
2

in (98), Abel obtains

4
√

c =
1 − e−π

√
k

1 + e−π
√

k

1 − e−3π
√

k

1 + e−3π
√

k

1 − e−5π
√

k

1 + e−5π
√

k
· · · and

4
√

b =
1 − e

− π√
k

1 + e
− π√

k

1 − e
− 3π√

k

1 + e
− 3π√

k

1 − e
− 5π√

k

1 + e
− 5π√

k

· · ·

Abel continued the explanation of the theory of transformation in a memoir pub-

lished in the third volume of Crelle’s Journal (1828), Sur le nombre des transforma-

tions différentes qu’on peut faire subir à une fonction elliptique par la substitution

d’une fonction rationnelle dont le degré est un nombre premier donné (Œuvres, t. I,

p. 456–465). He puts

∆2 = (1 − x2)(1 − c2x2), ∆′2 = (1 − y2)(1 − c′2x2)

and supposes that the differential equation dy

∆′ = a dx
∆

is satisfied by

y =
A0 + A1x + . . . + A2n+1x2n+1

B0 + B1x + . . . + B2n+1x2n+1

where 2n + 1 is a prime number and one of the coefficients A2n+1, B2n+1

is different from 0. He recalls that, according to the Solution d’un problème

général, when B2n+1 = 0, one has y = δ
ε

p

v
, c′ = ε2 and a = δ

ε
where

p = x
(

1 − x2

λ2α

)

· · ·
(

1 − x2

λ2(nα)

)

, v = (1 − c2λ2αx2) · · · (1 − c2λ2(nα)x2),

ε = cn+ 1
2
(

λ
(

ω
2

+ α
)

. . . λ
(

ω
2

+ nα
))2

, δ = cn+ 1
2 (λα · λ(2α) · · · λ(nα))2 and

α = mω+m′ω′
2n+1

(m, m′ integers). Other solutions are given by composing with f ′+ fy

g′+gy

where f ′, f, g, g′ are constants such that
(

1 + g+ f

g′+ f ′ x
)(

1 + g− f

g′− f ′ x
) (

1 + g+c′ f

g′+c′ f ′ x
)

×
(

1 + g−c′ f

g′−c′ f ′ x
)

= (1 − x2)(1 − c′2x2). Thus, disregarding the signs, one finds 12

values for y and 6 values for c′ for each choice of α:
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I II III IV V VI

c′ ε2 1

ε2

(

1−ε
1+ε

)2 (

1+ε
1−ε

)2 (

1−εi
1+εi

)2 (

1+εi
1−εi

)2

a ± δ
ε

∓δε ± δ
2ε

(1 + ε)2i ∓ δ
2ε

(1 − ε)2i ± δ
2ε

(1 + εi)2i ∓ δ
2ε

(1 − εi)2i

y

{

δ
ε

p
v

1
δε

v
p

ε
δ

v
p

δε
p
v

1+ε
1−ε

v±δp
v∓δp

1−ε
1+ε

v±δp
v∓δp

1+εi
1−εi

v±δpi
v∓δpi

1−εi
1+εi

v±δpi
v∓δpi

.

This comes from the fact that the modulus c2 is a modular function of level

2 in Klein’s sense: it is invariant by the group of 2 × 2 matrices congruent to the

identity modulo 2 operating on the ratio of the periods, and this group is of index 6

in SL(2,Z).

It remains to count the number of α leading to different solutions. If α and α′

lead to the same solution of type I, one finds that p′ = p, v′ = v and δ′
ε′ = ± δ

ε
.

From p′ = p it results that λ2α′ = λ2(µα) for an integer µ between 1 and n, thus

α′ = kω+ k′ω′ ±µα where k, k′ are integers. For such a value of α′, p′ = p, v′ = v,

δ′ = δ, and ε′ = ε and both solutions are effectively equal. Now when α = mω
2n+1

, there

exist integers k, µ such that k(2n+1)±µm = 1 and one has kω±µα = ω
2n+1

. When

α = mω+m′ω′
2n+1

with m′ �= 0, there exist integers k′, µ such that k′(2n + 1) ± m′µ = 1

and one has kω+ k′ω′ ±µα = ω′+νω
2n+1

where ν = k(2n + 1)±µm. Thus the different

choices for α are ω
2n+1

, ω′
2n+1

, ω′+ω
2n+1

, ω′+2ω
2n+1

, . . . , ω′+2nω
2n+1

; their number is 2n + 2.

The values of y of types III, IV, V and VI may be written in another way with

the help of the identities v−δp = (1−x
√

c)(1−2k1x
√

c+cx2)(1−2k2x
√

c+cx2)

· · · (1−2kn x
√

c+ cx2),

v − δp
√

−1 = (1 − x
√

−c)(1 − 2k′
1x

√
−c − cx2)(1 − 2k′

2x
√

−c − cx2) · · ·
×(1 − 2k′

n x
√

−c − cx2)

and similar expressions for v + δp, v + δp
√

−1, where kµ = ∆(µα)

1−cλ2(µa)
, k′

µ =
∆(µα)

1+cλ2(µa)
, ∆(θ) = ±

√

(1 − λ2θ)(1 − c2λ2θ). When 0 < c < 1, Abel explains that

the only transformations for which c′ is real correspond to α = ω
2n+1

or ω′−ω
2n+1

and

that they are of type I, II, III or IV.

As we saw above, when 0 < c < 1, ω is real and ω′ = ω + ̟
√

−1 where ̟ is

real. Abel gives an expression of λθ = f
(

b
(

ω
2

− θ
))

in infinite product

λθ =
2

√
c

4
√

q sin
(π

ω
θ
)

(

1 − 2q2 cos
(

2π
ω

θ
)

+ q4
) (

1 − 2q4 cos
(

2π
ω

θ
)

+ q8
)

· · ·
(

1 − 2q cos
(

2π
ω

θ
)

+ q2
) (

1 − 2q3 cos
(

2π
ω

θ
)

+ q6
)

· · ·

where q = e− ̟
ω π and computes ε with the help of this formula. If α = ω

2n+1
, he finds

ε = 2
4
√

q2n+1

(

1 + q2(2n+1)

1 + q2n+1

1 + q4(2n+1)

1 + q3(2n+1)
. . .

)2

.
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The other values of α are of the form ̟i+2µω

2n+1
(0 ≤ µ ≤ 2n) and give

ε = 2
4

√

δ
µ

1 q
1

2n+1







1 +
(

δ
µ

1 q
1

2n+1

)2

1 + δ
µ

1 q
1

2n+1

1 +
(

δ
µ

1 q
1

2n+1

)4

1 +
(

δ
µ

1 q
1

2n+1

)3
. . .







2

where δ1 = cos 2π
2n+1

+
√

−1 sin 2π
2n+1

is a primitive (2n + 1)-th root of 1.

Thus the 2n + 2 values of ε are obtained by replacing q in the expression

2 4
√

q
(

1+q2

1+q

1+q4

1+q3 . . .
1+q2m

1+q2m−1 . . .
)2

=
√

c by

q2n+1, q
1

2n+1 , δ1q
1

2n+1 , δ2
1q

1
2n+1 , . . . , δ2n

1 q
1

2n+1 .

The same substitutions in the expression 2π
ω

4
√

q
(

1−q2

1−q

1−q4

1−q3 . . .
)2

give the 2n + 1

values of δ. Jacobi independently discovered similar rules for the transformations

(1829).

In a very short paper published in Crelle’s Journal(vol. 3, 1828; Œuvres,

t. I, p. 466), Abel states the rule for the transformation of elliptic integrals

of the third kind. Let f(y, x) = 0 be an algebraic integral of the differen-

tial equation dy√
(1−y2)(1−c′y2)

= a dx√
(1−x2)(1−c2x2)

. Then
∫

A+Bx2

1− x2

n2

dx√
(1−x2)(1−c2x2)

=
∫

A′+B′ y2

1− y2

m2

dy√
(1−y2)(1−c′2 y2)

+ k log p where A′, B′, m and k are functions of A, B, n

and p is an algebraic function of y and x. The transformed parameter m is determined

by the equation f(m, n) = 0. For n infinite, the integrals are of the second kind and

the rule for the transformation is
∫

(A + Bx2)
dx

√

(1 − x2)(1 − c2x2)
=

∫

(A′ + B′y2)
dy

√

(1 − y2)(1 − c′2 y2)
+ v

where v is an algebraic function of x and y.

8 Further Development of the Theory of Elliptic Functions

and Abelian Integrals

In the fourth volume of Crelle’s Journal (1829; Œuvres, t. I, p. 467–477), Abel

published a Note sur quelques formules elliptiques, devoted to the translation of the

formulae given in the the Recherches into Legendre’s notation in order to recover

results published by Jacobi. Supposing that c = 1, the problem is to pass from the case

in which e is real to the case in which e2 is negative. Abel puts λα = f
(

ω
2

− bα
)

where b = 1√
1+e2

so that x = λα is equivalent to α =
∫

0

dx√
(1−x2)(1−c2x2)

where

c = e√
1+e2

and b =
√

1 − c2. One has
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ω

2
= b

1
∫

0

dx
√

(1 − x2)(1 − c2x2)
,

̟

2
= b

1
∫

0

dx
√

(1 − x2)(1 − b2x2)
.

Abel auxiliary functions λ′α =
√

1 − λ2α, λ′′α =
√

1 − c2λ2α to play the

roles of cosamα, ∆amα in Jacobi’s notation. One has λ′α = ϕ
(

ω
2

− bα
)

, λ′′α =
bF

(

ω
2

− bα
)

. As in the preceding papers, Abel uses the expansions of fα, ϕα and

Fα in simple infinite products to obtain expressions for λθ, λ′θ and λ′′θ (cf. (98)):

λθ = A
1 − ρ2

1 + ρ2

1 − ρ2r2

1 + ρ2r2

1 − ρ−2r2

1 + ρ−2r2

1 − ρ2r4

1 + ρ2r4

1 − ρ−2r4

1 + ρ−2r4
· · · ,

λ′θ = A′ 2ρ

1 + ρ2

1 − ρ2r

1 + ρ2r2

1 − ρ−2r

1 + ρ−2r2

1 − ρ2r3

1 + ρ2r4

1 − ρ−2r3

1 + ρ−2r4
· · · ,

λ′′θ = A′′ 2ρ

1 + ρ2

1 + ρ2r

1 + ρ2r2

1 + ρ−2r

1 + ρ−2r2

1 + ρ2r3

1 + ρ2r4
.
1 + ρ−2r3

1 + ρ−2r4
. . . (100)

where ρ = e
− θπ

̟ ′ , r = e
− ω′

̟ ′ π , ω′
2

=

π
2
∫

0

dθ√
1−c2 sin2 θ

, ̟ ′
2

=
π
2
∫

0

dθ√
1−b2 sin2 θ

and

√
A =

(1 + r)(1 + r3) · · ·
(1 − r)(1 − r3) · · ·

,

√
A′ =

(1 + r2)(1 + r4)(1 + r6) · · ·
(1 − r)(1 − r3)(1 − r5) · · ·

,

√
A′′ =

(1 + r2)(1 + r4)(1 + r6) · · ·
(1 + r)(1 + r3)(1 + r5) · · ·

. (101)

Doing θ = ω′
2

+ ̟ ′
2

i in (100), one obtains ρ2 = −r and

λθ = f
(̟

2
i
)

=
√

1 + e2

e
=

1

c
= A

(

(1 + r)(1 + r3)(1 + r5) . . .

(1 − r)(1 − r3)(1 − r5) . . .

)2

= A2,

λ′θ = −ϕ

(

̟i

2

)

= −
i

e
= i

b

c
= 4A′i

√
r

(

1 + r2

1 − r

1 + r4

1 − r3
. . .

)2

.

Thus A = 1√
c
, A′ = 1

2 4√r

√

b
c
. In a similar way, doing θ = ω′

2
one obtains ρ2 = r and

λ′′θ = b = 4A′′√r
(

1+r2

1+r
1+r4

1+r3 . . .
)2

= 4A′′√r · A′′ so that A′′ =
√

b

2 4√r
. These values

compared with (101) give

4
√

c =
1 − r

1 + r

1 − r3

1 + r3

1 − r5

1 + r5
· · · ,

4

√

b

c
=

√
2 8
√

r
1 + r2

1 − r

1 + r4

1 − r3

1 + r6

1 − r5
· · · ,

4
√

b =
√

2 8
√

r
1 + r2

1 + r

1 + r4

1 + r3

1 + r6

1 + r5
· · · . (102)
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The limit value of λθ

1−ρ2 for θ → 0 is ̟ ′
2π

and, comparing with (100), this gives

4
√

c

√

̟ ′

π
=

(1 − r2)(1 − r4)(1 − r6) · · ·
(1 + r2)(1 + r4)(1 + r6) · · ·

and

√

̟ ′

π
=

(1 + r)(1 − r2)(1 + r3)(1 − r4) · · ·
(1 − r)(1 + r2)(1 − r3)(1 + r4) · · ·

= ((1 + r)(1 + r3)(1 + r5) · · · )2

×(1 + r)(1 + r2)(1 + r3) · · · × (1 − r)(1 − r2)(1 − r3) · · · .

Abel puts P = (1 + r)(1 + r3)(1 + r5) · · · and P′ = (1 + r2)(1 + r4)(1 + r6) · · ·
so that

PP′ = (1 + r)(1 + r2)(1 + r3) · · · =
1

(1 − r)(1 − r3)(1 − r5) · · ·

and 4
√

c = 1

P2 P′ ,
4
√

b =
√

2 8
√

r P′
P

. From these relations, he draws

P = 6
√

2 24

√

r

b2c2
, P′ =

6
√

b 24
√

r
3
√

2 12
√

c

1
8
√

r
, (103)

PP′ = (1 + r)(1 + r2)(1 + r3)(1 + r4) · · · =
12√

b
6√

2c 24√r
, (1 − r)(1 − r2)(1 − r3) · · · =

12√
b 3√c

6√
2 24√r

√

̟ ′
π

, one of the formulae published by Jacobi.

Now putting q = e
− ̟ ′

ω′ π
so that log r log q = π2, θ = ̟ ′

2
+ ω′

2

√
−1 + ω′

π
x
√

−1

and exchanging b and c, Abel obtains from (100)

λ

(

ω′

π
x

)

=
2

√
c

4
√

q sin x
1 − 2q2 cos 2x + q4

1 − 2q cos 2x + q2

1 − 2q4 cos 2x + q8

1 − 2q3 cos 2x + q6
· · · ,

λ′
(

ω′

π
x

)

= 2

√

b

c
4
√

q cos x
1 + 2q2 cos 2x + q4

1 − 2q cos 2x + q2

1 + 2q4 cos 2x + q8

1 − 2q3 cos 2x + q6
· · · ,

λ′′
(

ω′

π
x

)

=
√

b
1 + 2q cos 2x + q2

1 − 2q cos 2x + q2

1 + 2q3 cos 2x + q6

1 − 2q3 cos 2x + q6
· · · . (104)

By comparison with Jacobi’s formula for ∆amα, Abel finds

1 + 2q cos 2x + 2q4 cos 4x + 2q9 cos 6x + . . .

1 − 2q cos 2x + 2q4 cos 4x − 2q9 cos 6x + . . .

=
(1 + 2q cos 2x + q2)(1 + 2q3 cos 2x + q6)(1 + 2q5 cos 2x + q10) . . .

(1 − 2q cos 2x + q2)(1 − 2q3 cos 2x + q6)(1 − 2q5 cos 2x + q10) . . .
.

The logarithms of (104) are written
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log λ

(

ω′

π
x

)

= log 2 −
1

2
log c −

1

4

̟ ′

ω′ π + log sin x

+2

(

cos 2x
q

1 + q
+

1

2
cos 4x

q2

1 + q2
+

1

3
cos 6x

q3

1 + q3
+ . . .

)

,

log λ′
(

ω′

π
x

)

= log 2 +
1

2
log b −

1

2
log c −

1

4

̟ ′

ω′ π + log cos x

+2

(

cos 2x
q

1 − q
+

1

2
cos 4x

q2

1 + q2
+

1

3
cos 6x

q3

1 − q3
+ . . .

)

,

log λ′′
(

ω′

π
x

)

=
1

2
log b + 4

(

cos 2x
q

1 − q2
+

1

3
cos 6x

q3

1 − q6
+ . . .

)

.

For x = 0, this last formula gives log
(

1
b

)

= 8
(

q

1−q2 + 1
3

q3

1−q6 + 1
5

q5

1−q10 + . . .
)

and

the first one gives

log

(

1

c

)

=
1

2

̟ ′

ω′ π − 2 log 2 + 4

(

q

1 + q
−

1

2

q2

1 + q2
+

1

3

q3

1 + q3
− . . .

)

which is also equal to 8
(

r

1−r2 + 1
3

r3

1−r6 + 1
5

r5

1−r10 + . . .
)

according to (102). From

the expansions of ϕ
(

αω
2

)

, f
(

αω
2

)

and F
(

αω
2

)

in simple series (Recherches, formulae

(86)), Abel deduces

λ

(

ω′

π
x

)

=
4π

cω′
√

q

(

sin x
1

1 − q
+ sin 3x

q

1 − q3
+ sin 5x

q2

1 − q5
+ . . .

)

λ′
(

ω′

π
x

)

=
4π

cω′
√

q

(

cos x
1

1 + q
+ cos 3x

q

1 + q3
+ cos 5x

q2

1 + q5
+ . . .

)

=
2π

c̟ ′

(

rx − r1−x

1 + r
−

r3x − r3−3x

1 + r3
+

r5x − r5−5x

1 + r5
+ . . .

)

,

λ′′
(

ω′

π
x

)

=
2π

̟ ′

(

rx + r1−x

1 − r
−

r3x + r3−3x

1 − r3
+

r5x + r5−5x

1 − r5
+ . . .

)

.

Let c′ be a modulus (between 0 and 1) such that there exists a transformation

from the elliptic functions of modulus c to those of modulus c′, and let ω′′,̟ ′′, r ′, q′

be associated to c′ as ω′,̟ ′, r, q are associated to c. The characterisation stated in

Solution d’un problème général is ω′′
̟ ′′ = n

m
ω′
̟ ′ where n, m are integers, or r ′ = r

n
m ,

q′ = q
m
n . For instance, let us take c =

√

1
2
, so that ̟ ′ = ω′ and r = e−π . Any

admissible value of c′ is given by

4
√

c′ =
1 − e−µπ

1 + e−µπ

1 − e−3µπ

1 + e−3µπ

1 − e−5µπ

1 + e−5µπ
· · ·

=
√

2e
− π

8µ
1 + e

− 2π
µ

1 + e
− π

µ

1 + e
− 4π

µ

1 + e
− 3π

µ

1 + e
− 6π

µ

1 + e
− 5π

µ

· · ·
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where µ is a rational number and such a c′ is expressible by radicals. Another

example is that in which b′ = c or c′ = b; then ω′′ = ̟ ′, ̟ ′′ = ω′. In this case
̟ ′
ω′ = ω′′

̟ ′′ = n
m

ω′
̟ ′ and ω′

̟ ′ =
√

m
n

=
√

µ. Thus 4
√

c = 1−e−π
√

µ

1+e−π
√

µ

1−e−3π
√

µ

1+e−3π
√

µ

1−e−5π
√

µ

1+e−5π
√

µ
. . .

and
4
√

b = 1−e
− π√

µ

1+e
− π√

µ

1−e
− 3π√

µ

1+e
− 3π√

µ

1−e
− 5π√

µ

1+e
− 5π√

µ

. . .

At the end of this paper, Abel deduces the functional equation for a theta-function

from (103). Exchanging c and b and r and q, he obtains (1+q)(1+q3)(1+q5) · · · =
6
√

2
24√q
12√

bc
and comparing with (103)

1
24
√

r
(1 + r)(1 + r3)(1 + r5) · · · =

1

24
√

q
(1 + q)(1 + q3)(1 + q5) · · ·

whenever r and q are between 0 and 1 and related by log r · log q = π2. He recalls

some other results due to Cauchy (1818) and to Jacobi (1829).

In a second paper of the fourth volume of Crelle’s Journal (1829), Théorèmes

sur les fonctions elliptiques (Œuvres, t. I, p. 508–514), Abel considers the equation

ϕ(2n + 1)θ = R of which the roots are x = ϕ(θ + mα + µβ) where ϕ is the elliptic

function of the Recherches, α = 2ω
2n+1

, β = 2̟i
2n+1

and m, µ are integers. He proves

that if ψθ is a polynomial in these roots which is invariant when θ is changed into

θ + α or into θ + β, one has

ψθ = p + q f(2n + 1)θ · F(2n + 1)θ

where p and q are polynomials in ϕ(2n + 1)θ, of respective degrees ν and ν − 2,

ν being the highest exponent of ϕθ in ψθ. Indeed, by the addition theorem (73),

ϕ(θ + mα + µβ) is a rational function of ϕθ and fθ · Fθ. Since ( fθ · Fθ)2 =
(1 − c2ϕ2θ)(1 + e2ϕ2θ), one has

ψθ = ψ1(ϕθ) + ψ2(ϕθ) fθ · Fθ

where ψ1(ϕθ) and ψ2(ϕθ) are rational. They are respectively given by

ψ1(ϕθ) =
1

2
(ψθ + ψ(ω − θ)) and

ψ2(ϕθ) fθ · Fθ =
1

2
(ψθ − ψ(ω − θ)). (105)

The invariance of ψθ by θ 
→ θ + α or θ + β implies that ψ1(ϕ(θ + mα + µβ)) =
ψ1(ϕθ), so that ψ1(ϕθ) is a rational symmetric function of the roots of the considered

equation. Thus ψ1(ϕθ) = p rational function of ϕ(2n + 1)θ = y. If y = ϕ(2n + 1)δ

is a pole of p, (105) shows that some δ + mα + µβ or some ω − δ + mα + µβ is

a pole of ϕ, but then (2n + 1)δ is also a pole of ϕ, which is absurd. On the other

hand, f(2n +1)θ = fθ ·u, F(2n +1)θ = Fθ ·v where u and v are rational functions

of ϕθ. It results that ψ2(ϕθ) fθ·Fθ

f(2n+1)θ·F(2n+1)θ
= χ(ϕθ) rational function of ϕθ also equal to

1
2

ψθ−ψ(ω−θ)

f(2n+1)θ·F(2n+1)θ
according to (105). Thus χ(ϕθ) is invariant by θ 
→ θ +α or θ +β



The Work of Niels Henrik Abel 143

and one proves as above that is it a polynomial q in ϕ(2n + 1)θ. Abel computes the

degrees of p and q by considering the behaviour of ψθ and ψ(ω − θ) when ϕθ is

infinite.

When ν = 1, p is of degree 1 and q = 0, so that ψθ = A + Bϕ(2n + 1)θ where

A and B are constants. This is the case for ψθ =
2n
∑

m=0

2n
∑

µ=0

π(θ + mα + µβ) where

πθ is the product of some roots of the equation and one finds that A = 0 when the

number of factors of πθ is odd whereas B = 0 when this number is even.

In the same way, Abel obtains that if ψθ is a polynomial in the quantities

f(θ + mα + µβ) (resp. F(θ + mα + µβ)) such that ψ(θ) = ψ(θ + α) = ψ(θ + β),

then ψθ = p+qϕ(2n +1)θ · F(2n +1)θ (resp. p+qϕ(2n +1)θ · f(2n +1)θ) where

p and q are polynomials in f(2n + 1)θ (resp. F(2n + 1)θ) of respective degrees

ν, ν − 2, ν beeing the highest exponent of fθ (resp. Fθ) in ψθ.

As an application, Abel deduces a formula established by Jacobi (1828) for the

division of elliptic integrals: ϕ
(

θ
2n+1

)

= 1
2n+1

4n2+4n
∑

m=0

2n+1
√

pm + qm fθ · Fθ where pm

(resp. qm) is an odd (resp. even) polynomial in ϕθ of degree 2n + 1 (resp. 2n − 2)

and p2
m − q2

m( fθ)2(Fθ)2 = (ϕ2θ − a2
m)2n+1 where am is a constant.

A third memoir of Abel in the volume 4 of Crelle’s Journal (1829) is

a small treatise on elliptic functions, titled Précis d’une théorie des fonctions el-

liptiques (Œuvres, t. I, p. 518–617). He uses the following notations: ∆(x, c) =
±

√

(1 − x2)(1 − c2x2), ̟(x, c) =
∫

dx
∆(x,c)

(integral of the first kind), ̟0(x, c) =
∫

x2dx
∆(x,c)

(integral of the second kind) and

Π(x, c, a) =
∫

dx
(

1 − x2

a2

)

∆(x, c)
(integral of the third kind).

The general problem dealt with by Abel is the following: “To find all the possible

cases in which one may satisfy an equation of the form

α1̟(x1, c1) + α2̟(x2, c2) + . . . + αn̟(xn, cn)

+α′
1̟0(x′

1, c′
1) + α′

2̟0(x′
2, c′

2) + . . . + α′
m̟0(x′

m, c′
m)

+α′′
1Π(x′′

1 , c′′
1, a1) + α′′

2Π(x′′
2 , c′′

2, a2) + . . . + α′′
µΠ(x′′

µ, c′′
µ, aµ)

= u + A1 log v1 + A2 log v2 + . . . + Aν log vν (106)

where α1, α2, . . . , αn; α′
1, α

′
2, . . . , α′

m ; α′′
1, α

′′
2, . . . , α′′

µ; A1, A2, . . . , Aν are con-

stant quantities, x1, x2, . . . , xn; x′
1, x′

2, . . . , x′
m ; x′′

1 , x′′
2 , . . . , x′′

µ variables related by

algebraic equations and u, v1, v2, . . . , vν algebraic functions of these variables.”

This problem is attacked by purely algebraic means, that is without the use of

elliptic functions and their double periodicity.

Here are some results announced in the introduction: “ If
∫

rdx
∆(x,c)

, where r is an

arbitrary rational function of x, is expressible by algebraic and logarithmic functions

and by elliptic integrals ψ,ψ1, ψ2, . . . , one may always suppose that
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∫

rdx

∆(x, c)
= p∆(x, c) + αψ(y) + α′ψ1(y1) + α′′ψ2(y2) + . . .

+A1 log
q1 + q′

1∆(x, c)

q1 − q′
1∆(x, c)

+ A2 log
q2 + q′

2∆(x, c)

q2 − q′
2∆(x, c)

+ . . .

where all the quantities p, q1, q2, . . . , q′
1, q′

2, . . . , y, y1, y2, . . . are rational func-

tions of x.” In this statement, ∆(x, c) may be the square root of a polynomial of any

degree.

“If any equation of the form (106) takes place and one designates by c any one

of the moduli which figure in it, among the other moduli there is at least one c′

such that the differential equation dy

∆(y,c′) = ε dx
∆(x,c)

may be satisfied by putting for y

a rational function of x, and vice versa.”

The second part of the memoir was not written by Abel and we have only the

statement of its principal results in the introduction. Abel supposes that 0 < c < 1

and introduces the elliptic function λθ inverse of ̟(x, c), with its main properties:

double periodicity, with the fundamental periods 2̟ , ωi given by ̟
2

=
1
∫

0

dx
∆(x,c)

,

ω
2

=
1
∫

0

dx
∆(x,b)

, determination of its zeros and poles, equation λ(θ ′ + θ)λ(θ ′ − θ) =

λ2θ ′−λ2θ

1−c2λ2θ·λ2θ ′ , expansion in infinite product. He proves that if the equation (λθ)2n +
an−1(λθ)2n−2+. . .+a1(λθ)2+a0 = (b0λθ+b1(λθ)3+. . .+bn−2(λθ)2n−3)∆(λθ, c) is

satisfied by θ = θ1, θ2, . . . , θ2n such that λ2θ1, λ
2θ2, . . . , λ2θ2n be different between

them, then λ(θ1 + θ2 + . . . + θ2n) = 0 and −λ(θ2n) = λ(θ1 + θ2 + . . . + θ2n−1) =
−a0

λθ1λθ2...λθ2n−1
. This statement gives a general theorem for the addition and its proof

is given in the first part.

The roots of the equation of division of the periods are related by remarkable

linear relations, where δ = cos 2π
2µ+1

+
√

−1 sin 2π
2µ+1

is a primitive (2µ + 1)-th root

of 1:

0 = λ

(

2m̟

2µ + 1

)

+ δkλ

(

2m̟ + ωi

2µ + 1

)

+ δ2kλ

(

2m̟ + 2ωi

2µ + 1

)

+δ3kλ

(

2m̟ + 3ωi

2µ + 1

)

+ . . . + δ2µkλ

(

2m̟ + 2µωi

2µ + 1

)

,

0 = λ

(

mωi

2µ + 1

)

+ δk′
λ

(

2̟ + mωi

2µ + 1

)

+ δ2k′
λ

(

4̟ + mωi

2µ + 1

)

+δ3k′
λ

(

6̟ + mωi

2µ + 1

)

+ . . . + δ2µk′
λ

(

4µ̟ + mωi

2µ + 1

)

.

Sylow gave a demonstration of these relations in 1864 and he explains how to deduce

them from the theory of transformation in the final notes to Abel’s Works. He also

reproduces another proof communicated to him by Kronecker in a letter in 1876

(Œuvres, t. II, p. 314–316).

If there is a transformation of
∫

dx
∆(x,c)

(with 0 < c < 1 ) into ε
∫

dy

∆(y,c′) (with c′

arbitrary) by putting for y an algebraic function of x, then c′ is given by one of the
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following formulae:
4
√

c′ =
√

2 8
√

q1
(1+q2

1 )(1+q4
1)(1+q6

1)···
(1+q1)(1+q3

1)(1+q5
1)···

,
4
√

c′ = 1−q1
1+q1

1−q3
1

1+q3
1

1−q5
1

1+q5
1

· · ·

where q1 = qµ = e(−µ ω
̟ +µ′i)π, µ,µ′ rational numbers.

As in the Solution d’un problème général, Abel obtains a statement concerning

the rational transformation of a real elliptic integral of modulus c into another of

modulus c′, with 0 < c, c′ < 1. The periods ̟,ω,̟ ′, ω′ must be related by
̟ ′
ω′ = n′

m
̟
ω

where n′, m are integers and this condition is sufficient, the multiplicator

being ε = m ̟ ′
̟

. Abel proposes to determine the rational function of x expressing y

by means of its zeros and poles.

When c may be transformed into its complement b =
√

1 − c2 (singular mod-

ulus), ̟
ω

=
√

m
n

and dy

∆(y,b)
=

√
mn dx

∆(x,c)
. Abel says that c is determined by an

algebraic equation which “seems to be solvable by radicals”; he is thus doubtful

about this fact, later proved by Kronecker. In the final notes (Œuvres, t. II, p. 316–

318), Sylow gives a proof of this fact by reduction to the solvability of the equation

of division of the periods. Abel gives an expression of 4
√

c by an infinite product.

He also state that two moduli c and c′ which may be transformed into one another

are related by an algebraic relation and that, in general, it does not seem possible to

draw the value of c′ by radicals. But it is possible when c may be transformed into its

complement. According to Abel, all the roots of a modular equation are rationally

expressible by two of them, but this statement is mistaken; they are expressible with

the help of radicals by one of them.

Abel gives an expression of λθ as a quotient of two entire functions ϕθ =
θ + aθ3 + a′θ5 + . . . and fθ = 1 + b′θ4 + b′′θ6 + . . . related by the functional

equations

ϕ(θ ′ + θ)ϕ(θ ′ − θ) = (ϕθ fθ ′)2 − (ϕθ fθ ′)2 − (ϕθ ′ fθ)2,

f(θ ′ + θ) f(θ ′ − θ) = ( fθ fθ ′)2 − c2(ϕθϕθ ′)2.

These functions are similar to the al-functions of Weierstrass, later replaced by σ .

As we have said, Abel communicated the functional equations to Legendre, saying

that they characterise the functions ϕ and f (see §1).

Abel adds that most of these properties are still valid when the modulus c is

a complex number.

The first part of the memoir, the only one written and published, is divided in

five chapters. In the first one (p. 528–545), Abel deals with the general properties

of elliptic integrals, beginning by Euler addition theorem proved as a particular case

of Abel theorem: “Let fx and ϕx be two arbitrary polynomials in x, one even and

the other odd, with indeterminate coefficients. Let us put ( fx)2 − (ϕx)2(∆x)2 =
A(x2 − x2

1)(x2 − x2
2)(x2 − x2

3) . . . (x2 − x2
µ) where A does not depend on x, I say

that one will have

Πx1 + Πx2 + Πx3 + . . . + Πxµ = C −
a

2∆a
log

fa + ϕa · ∆a

fa − ϕa · ∆a
, (107)

a denoting the parameter of the function Πx, such that Πx =
∫

dx
(

1− x2

a2

)

∆x
. The

quantity C is the integration constant.”
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When all the coefficients of fx and ϕx are independent variables, x1, x2, . . . , xµ

are all distinct and one has ψx = ( fx)2 − (ϕx)2(∆x)2 = 0 and fx + ϕx∆x = 0

if x is any one of them. Let δ denote the differentiation with respect to the variable

coefficients of fx and ϕx. One has

ψ ′x · dx + 2 fx · δ fx − 2ϕx · δϕx · (∆x)2 = ψ ′x · dx − 2∆x(ϕx · δ fx − fx · δϕx)

= 0,

thus Πx =
∫

2(ϕx·δ fx− fx·δϕx)
(

1− x2

a2

)

ψ′x
and

Πx1 + Πx2 + Πx3 + . . . + Πxµ

=
∫









θx1
(

1 − x2
1

a2

)

ψ ′x1

+
θx2

(

1 − x2
2

a2

)

ψ ′x2

+ . . . +
θxµ

(

1 − x2
µ

a2

)

ψ ′xµ









(108)

where θx = 2(ϕx · δ fx − fx · δϕx) is a polynomial in x, of degree less than that of

ψx. Therefore, the right hand side of (108) is equal to
∫

aθa
2ψa

= a
∫

ϕa·δ fa− fa·δϕa

( fa)2−(ϕa)2(∆a)2 =
C − a

2∆a
log fa+ϕa·∆a

fa−ϕa·∆a
. This proof is valid whenever ∆x is the square root of an even

polynomial in x, as was seen in the publication of Abel theorem for hyperelliptic

functions in the third volume of Crelle’s Journal (see our §5). It is naturally extended

to the case in which the coefficients of fx and ϕx are no more independent and some

of the x j may be equal. Taking a infinite, Πx is reduced to the integral of the first

kind ̟x and the logarithmic part vanishes, so that

̟x1 + ̟x2 + . . . + ̟xµ = C.

An expansion of both members of (107) in ascending powers of 1
a

gives, by com-

parison of the coefficients of 1

a2 , ̟0x1 + ̟0x2 + . . . + ̟0xµ = C − p where p is

an algebraic function of the variables.

As in the general case of Abel theorem, one may choose x1, x2, . . . , xm as

independent variables and determine the coefficients of fx and ϕx in function of

them. The µ − m quantities x2
m+1, x2

m+2, . . . , x2
µ are then the roots of an equation

of degree µ − m and they are algebraic functions of x1, x2, . . . , xm . The minimum

value of µ − m is 1. When µ = 2n is even, one may take

fx = a0 + a1x2 + a2x4 + . . . + an−1x2n−2 + x2n,

ϕx = (b0 + b1x2 + b2x4 + . . . + bn−2x2n−4)x,

( fx)2 − (ϕx)2(1 − x2)(1 − c2x2)

= (x2 − x2
1)(x2 − x2

2) . . . (x2 − x2
2n−1)(x2 − y2), (109)

fx1 + ϕx1 · ∆x1 = fx2 + ϕx2 · ∆x2 = . . .

= fx2n−1 + ϕx2n−1 · ∆x2n−1 = 0. (110)

The linear equations of the last line determine the coefficients a0, a1, . . . , an−1,

b0, b1, . . . , bn−2 as rational functions of x1, x2, . . . , x2n−1,∆x1,∆x2, . . . ,∆x2n−1.

For x = 0, (109) gives
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a2
0 = x2

1x2
2 . . . x2

2n−1 y2 whence y = −
a0

x1x2 . . . x2n−1

.

Since fx2n + ϕx2n · ∆x2n = 0, putting ∆x2n = −∆y one has ∆y = fy

ϕy
a rational

function of x1, x2, . . . ,∆x1,∆x2, . . . as is y. If, in (109), we put x1 = x2 =
. . . = x2n−1 = 0, the right hand side becomes divisible by x4n−2 and we must have

a0 = a1 = . . . = an−1 = b0 = b1 = . . . = bn−2 = 0. Thus we obtain x4n =
x4n−2(x2 − y2) and y = 0. Abel shows that if ∆x1 = ∆x2 = . . . = ∆x2n−1 = 1 for

x1 = x2 = . . . = x2n−1 = 0, then ∆y = 1. Indeed, for x1, x2, . . . , x2n−1 infinitely

small, the equations (110) reduce to

x2n + an−1x2n−2 + bn−2x2n−3 + . . . + b0x + a0 = 0, (111)

with 2n roots x1, x2, . . . , x2n−1 and z such that a0 = zx1x2 · · · x2n−1. Thus z = −y

and consequently

y2n + an−1 y2n−2 + . . . + a1 y2 + a0 = (b0 + b1 y2 + . . . + bn−2 y2n−4)y,

relation equivalent to ∆y = 1. Since the sum of the roots of (111) is 0, we have

y = x1 + x2 + . . . + x2n−1

for x1, x2, . . . , x2n−1 infinitely small.

It is also possible to take fx odd of degree 2n − 1 and ϕx even of degree 2n − 2.

In this case, one finds that 1
cy

= − a0
x1x2...x2n−1

.

When µ = 2n + 1 is odd, let us take

fx = (a0 + a1x2 + a2x4 + . . . + an−1x2n−2 + x2n)x and

ϕx = b0 + b1x2 + b2x4 + . . . + bn−1x2n−2,

( fx)2 − (ϕx)2(1 − x2)(1 − c2x2) = (x2 − x2
1)(x2 − x2

2) . . . (x2 − x2
2n)(x2 − y2),

fx1 + ϕx1 · ∆x1 = fx2 + ϕx2 · ∆x2 = . . . = fx2n + ϕx2n · ∆x2n = 0.

As in the preceding case, one obtains y = b0
x1x2...x2n

and ∆y = fy

ϕy
. For

x1, x2, . . . , x2n infinitesimal, ∆x1,∆x2, . . . ,∆x2n being 1, one has y = x1 + x2 +
. . . + x2n and ∆y = 1. One may also suppose fx even and ϕx odd, and then
1
cy

= b0
x1x2...x2n

.

When n = 1, fx = a0x + x3, ϕx = b0 where a0 and b0 are determined by the

equations

a0x1 + x3
1 + b0∆x1 = a0x2 + x3

2 + b0∆x2 = 0

which give a0 = x3
2∆x1−x3

1∆x2

x1∆x2−x2∆x1
, b0 = x2x3

1−x1x3
2

x1∆x2−x2∆x1
. Then

y =
b0

x1x2

=
x2

1 − x2
2

x1∆x2 − x2∆x1

=
x1∆x2 + x2∆x1

1 − c2x2
1 x2

2

.
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One may verify that (a0x+x3)2−b2
0(1−x2)(1−c2x2) = (x2−x2

1)(x2−x2
2)(x2−y2).

The addition theorem takes the form ̟x1 + ̟x2 = ̟y + C, ̟0x0 + ̟0x2 =
̟0 y − x1x2 y + C,

Πx1 + Πx2 = Πy −
a

2∆a
log

a0a + a3 + x1x2 y∆a

a0a + a3 − x1x2 y∆a
+ C,

and ∆y = a0 y+y3

b0
= a0+y2

x1x2
.

When x1, x2, . . . , xµ = x (µ = 2n − 1 or 2n), the coefficients a0, a1, . . . ,

b0, b1, . . . are determined by the equation fx + ϕx · ∆x = 0 and its first µ − 1

derivatives. Let xµ = − a0
xµ for µ = 2n−1,

b0
xµ for µ = 2n be the corresponding value

of y, such that ̟xµ = C + µ̟x. One has ̟(xµ+m) = C + ̟xµ + ̟xm = C + ̟y

if y = xm∆xµ+xµ∆xm

1−c2x2
m x2

µ

and this equation gives xµ+m = y∆e+e∆y

1−c2e2 y2 where e is a constant.

Letting x tend towards 0, one sees that xµ+m is equivalent to (m + µ)x as is y, so

that e = 0, ∆e = 1 and

xµ+m =
xm∆xµ + xµ∆xm

1 − c2x2
m x2

µ

. (112)

In the same way, xµ−m = xm∆xµ−xµ∆xm

1−c2x2
m x2

µ

. For m = 1, this gives xµ+1 = −xµ−1 +
2xµ∆x

1−c2x2x2
µ

and it is easy to deduce by induction that x2µ+1,
∆x2µ+1

∆x
,

x2µ

∆x
and ∆x2µ are

rational functions of x. One has xµ+m xµ−m = x2
µ−x2

m

1−c2x2
µx2

m
; for m = µ − 1, this gives

x2µ−1 = 1
x

x2
µ−x2

µ−1

1−c2x2
µx2

µ−1

. On the other hand, (112) with m = µ gives x2µ = 2xµ∆xµ

1−c2x4
µ

.

Let us write xµ = pµ

qµ
, ∆xµ = rµ

q2
µ

where p2
µ and qµ are polynomials in x

without any common divisor. We have
p2µ

q2µ
= 2pµqµrµ

q4
µ−c2 p4

µ
whence p2µ = 2pµqµrµ,

q2µ = q4
µ − c2 p4

µ, for these expressions are relatively prime. On the other hand,

x p2µ−1

q2µ−1
=

p2
µq2

µ−1−q2
µ p2

µ−1

q2
µq2

µ−1−c2 p2
µ p2

µ−1

which is an irreducible fraction. Indeed the simultaneous

equations p2
µq2

µ−1 − q2
µ p2

µ−1 = q2
µq2

µ−1 − c2 p2
µ p2

µ−1 = 0 would give x2
µ = x2

µ−1

and 1 − c2x2
µx2

µ−1 = 0. Since x2µ−1 = xµ∆xµ−1+xµ−1∆xµ

1−c2x2
µx2

µ−1

=
x2
µ−x2

µ−1

xµ∆xµ−1−xµ−1∆xµ
, we

should have xµ∆xµ−1 = xµ−1∆xµ = 0 and this is absurd for x2
µ = 1

c
. Thus

p2µ−1 = 1
x
(p2

µq2
µ−1 − q2

µ p2
µ−1), q2µ−1 = q2

µq2
µ−1 − c2 p2

µ p2
µ−1 and, from these

relations, Abel recursively deduces that p2µ−1 is an odd polynomial in x of degree

(2µ − 1)2, p2µ = p′∆x where p′ is an odd polynomial of degree (2µ)2 − 3, qµ is

an even polynomial of degree µ2 − 1 (resp. µ2) when µ is odd (resp. even). More

precisely,
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p2µ−1 = x(2µ − 1 + A2x2 + . . . + A(2µ−1)2−1x(2µ−1)2−1),

p2µ = x∆x(2µ + B2x2 + . . . + B4µ2−4x(2µ)2−4),

q2µ−1 = 1 + A1
4x4 + . . . + A1

(2µ−1)2−1
x(2µ−1)2−1,

q2µ = 1 + B1
4 x4 + . . . + B1

4µ2 x(2µ)2
.

In his second chapter (p. 545–557), Abel considers an exact differential form

y1dx1 + y2dx2 + . . . + yµdxµ (113)

where the variables x1, x2, . . . , xµ are related by some algebraic relations in number

less than µ and y1, y2, . . . , yµ are algebraic functions of them. He supposes that its

primitive is of the form

u + A1 log v1 + A2 log v2 + . . . + Aν log vν

+ α1ψt1 + α2ψt2 + . . . + αnψtn (114)

where A1, A2, . . . , Aν, α1, α2, . . . , αn are constants, u, v1, v2, . . . , vν, t1, t2, . . . , tn
algebraic functions of x1, x2, . . . , xµ and ψm x =

∫

θ ′dx
∆m x

is an elliptic integral of

modulus cm (1 ≤ m ≤ n), with ∆m x = ±
√

(1 − x2)(1 − c2
m x2) and θ ′ = 1, x2

or 1

1− x2

a2

. Let us suppose that x1, x2, . . . , xm are independent variables and that

xm+1, xm+2, . . . , xµ are algebraic functions of them. Abel introduces an algebraic

function θ such that

u, v1, v2, . . . , vν, t1, t2, . . . , tn,∆1(t1),∆2(t2), . . . ,∆n(tn) (115)

are rationally expressible in θ, x1, x2, . . . , xµ, y1, y2, . . . , yµ. He says that a con-

venient linear combination of the functions (115) has this property. In other words,

Abel uses what is now called a Galois resolvant, which is most remarkable. Let

V = 0 the minimal algebraic equation satisfied by θ, with coefficients rational with

respect to x1, x2, . . . , xµ, y1, y2, . . . , yµ, and let δ be its degree. Writing that (113)

is the differential of (114), one obtains a relation

p1dx1 + p2dx2 + . . . + pmdxm = 0

where p1, p2, . . . , pm are rational functions of θ, x1, x2, . . . , xµ, y1, y2, . . . , yµ and

this implies that p1 = p2 = . . . = pm = 0. These last relations are still verified

when θ is replaced by any one of the δ roots θ1, θ2, . . . , θδ of V = 0 because it is an

irreducible equation. It results that

δ ∫(y1dx1 + y2dx2 + . . . + yµdxµ) = U + A1 log V1 + . . . + Aν log Vν

+α1(ψ1t ′1 + ψ1t ′′1 + . . . + ψ1t
(δ)
1 ) + . . .

+αn(ψnt ′n + ψnt ′′n + . . . + ψntn(δ))

where U = u′ +u′′ + . . .+u(δ) is the sum of the values taken by u when θ is succes-

sively replaced by θ1, θ2, . . . , θδ, log Vm = log v′
m +log v′′

m +. . .+log v(δ)
m is the anal-

ogous sum associated to log vm and t ′m, t ′′m, . . . , t(δ)m are the values taken by tm . Now,
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by the addition theorem for elliptic integrals, ψm t ′m+ψm t ′′m+. . .+ψm tm(δ) = ψm Tm+
p+B1 log q1+B2 log q2+. . .+Bν log qν where Tm,∆m Tm, p, q1, q2, . . . , qν are ra-

tional functions of t ′m, t ′′m, . . . , t(δ)m ,∆m(t ′m),∆m(t ′′m), . . . ,∆m(t(δ)m ) and consequently

of θ1, θ2, . . . , θδ, x1, x2, . . . , xµ, y1, y2, . . . , yµ. But since they are symmetric with

respect to θ1, θ2, . . . , θδ, they are rational functions of x1, x2, . . . , xµ, y1, y2, . . . , yµ

as are U and the Vm . We finally obtain a relation of the form

δ ∫(y1dx1 + y2dx2 + . . . + yµdxµ

= r + A′ log ρ′ + A′′ log ρ′′ + . . . + A(k) log ρ(k)

+ α1ψ1θ1 + α2ψ2θ2 + . . . + αnψnθn

where δ is an integer, α1, α2, . . . , αn are the same as in (114), A′, A′′, . . . are

constants and θ1,∆1(θ1), θ2,∆2(θ2), . . . , θn,∆n(θn), r, ρ′, ρ′′, . . . , ρ(k) are ratio-

nal functions of x1, x2, . . . , xµ, y1, y2, . . . , yµ.

A particular case concerns the differential forms (113) of which the primitive is

of the form u+ A1 log v1 + A2 log v2 + . . .+ Aν log vν where u, v1, v2, . . . , vν are al-

gebraic functions of x1, x2, . . . , xµ. Then one may suppose that u, v1, v2, . . . , vν are

rational functions of x1, x2, . . . , xµ, y1, y2, . . . , yµ. In a footnote, Abel announces

a general theory, based on this result, for the reduction of integrals of algebraic

differential forms by algebraic and logarithmic functions.

Applied to elliptic integrals, the preceding theorem takes the form: if

∫ (

α1r1

∆1x1

dx1 +
α2r2

∆2x2

dx2 + . . . +
αµrµ

∆µxµ

dxµ

)

= u + A1 log v1 + A2 log v2 + . . . + Aν log vν (116)

where r1, r2, . . . , rµ are rational functions and u, v1, v2, . . . , vν are algebraic func-

tions of x1, x2, . . . , xµ, one may suppose that u, v1, v2, . . . , vν are rational functions

of x1, x2, . . . , xµ,∆1x1,∆2x2, . . . ,∆µxµ. From (116), we may also conclude that

there exists an integer δ such that

δα1ψ1x1 + δα2ψ2x2 + . . . + δαmψm xm + αm+1ψm+1θ1 + . . . + αµψµθµ−m

= r + A′ log ρ′ + A′′ log ρ′′ + . . . + A(k) log ρ(k)

where ψ j x =
∫

r1
∆ j x

dx and θ1,∆m+1θ1, θ2,∆m+2θ2, . . . , θµ−m,∆µθµ−m, r, ρ′, ρ′′,

. . . , ρ(k) are rational functions of x1, x2, . . . , xm,∆1x1,∆2x2, . . . ,∆m xm . When

only one elliptic integral ψm x is isolated, this gives

δαmψm x = −α1ψ1θ1 − α2ψ2θ2 − . . . − αm−1ψm−1θm−1 − αm+1ψm+1θm+1 − . . .

−αµψµθµ + r + A′ log ρ′ + A′′ log ρ′′ + . . . + A(k) log ρ(k) (117)

where θ1,∆m+1θ1, θ2,∆m+2θ2, . . . , r, ρ′, ρ′′, . . . are rational functions of x and

∆m x, that is of the form p + q∆m x with p, q rational in x.

When x1 = x2 = . . . = xµ = x and c1 = c2 = . . . = cµ = c, one obtains the

following theorem: if there is a relation
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α̟x + α0̟0x + α1Π1x + α2Π2x + . . . + αµΠµx

= u + A1 log v1 + A2 log v2 + . . . + Aν log vν

where u, v1, v2, . . . , vν are algebraic functions of x, one may suppose that they are

of the form p + q∆x with p, q rational in x.

Differentiating (117) we obtain a relation of the form P + Q∆m x = 0 which

implies P = Q = 0 and therefore P − Q∆m x = 0. When the sign of ∆m x is

changed into the opposite, the θ j take new values θ ′
j and we have −δαmψm x =

−
∑

αψθ ′ + v′ where v′ designates the algebraic and logarithmic part. It results that

2δαmψm x =
∑

α(ψθ ′ − ψθ) + v − v′ where, by the addition theorem,

ψθ ′ − ψθ = ψy − v′′

if y = θ ′∆θ−θ∆θ ′

1−c2θ2θ ′2 , v′′ denoting an algebraic and logarithmic function. Now θ =
p + q∆m x and ∆θ = r + ρ∆m x where p, q, r, ρ are rational functions of x and it

results that θ ′ = p−q∆m x, ∆θ ′ = r −ρ∆m x and that y = t∆m x where t is a rational

function of x. Then it is easy to see that ∆y is a rational function of x. One may replace

y by z = y∆e+e∆y

1−c2e2 y2 where e is a constant because ψy and ψz differ by an algebraic

and logarithmic function. For e = 1, z = ∆y

1−c2 y2 is a rational function of x and

∆z = c2−1

1−c2 y2 y has a rational ratio to ∆m x. We have 2δαmψm x =
∑

αψz + V where

V is an algebraic and logarithmic function. Then V = u+ A1 log v1 + A2 log v2 +. . .

where u, v1, v2, . . . are of the form p + q∆m x with p and q rational in x.

Taking m = µ, we obtain 2δαµψµxµ = α1ψ1z1 +α2ψ2z2 +. . .+αµ−1ψµ−1zµ−1

+ V and we may eliminate ψµxµ between this relation and (116), getting

α1(2δψ1x1 − ψ1z1) + . . . + αµ−1(2δψµ−1xµ−1 − ψµ−1zµ−1) = V ′.

Since δ is an integer, there exist x′
1, x′

2, . . . , x′
µ−1 such that 2δψ j x j − ψ j z j =

ψ j x
′
j +V j (1 ≤ j ≤ µ−1) and we have α1ψ1x′

1 +α2ψ2x′
2 + . . .+αµ−1ψµ−1x′

µ−1 =
u′ + A′

1 log v′
1 + A′

2 log v′
2 + . . . + A′

ν′ log v′
ν′ of the same form as (116) with one

elliptic integral less. We may iterate until we arrive at a relation with only algebraic

and logarithmic functions.

The general problem (106) has been reduced to the following one: “To satisfy in

the most general manner the equation

ψx = β1ψ1 y1 + β2ψ2 y2 + . . . + βnψn yn

+u + A1 log v1 + A2 log v2 + . . . + Aν log vν (118)

where ψ,ψ1, ψ2, . . . , ψn designate elliptic integrals of the three kinds, supposing

that y1, y2, . . . , yn are rational functions of x and that ∆1 y1,∆2 y2, . . . ,∆n yn are

of the form p∆x where p is rational in x and ∆x designate the radical which

appears in the function ψx.” If ∆m ym = pm∆x and ψm x =
∫

θm x·dx
∆m x

where θm x is

rational, we have ψm ym =
∫

θm ym

pm

dym

dx
dx
∆x

where θm ym

pm

dym

dx
is a rational function of x.

Thus ψm ym = r + A̟x + A0̟0x + A′Π(x, a′) + A′′Π(x, a′′) + . . . where r is an

algebraic and logarithmic expression. Equation (118) finally takes the form
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α̟x + α0̟0x + α1Π(x, a1) + α2Π(x, a2) + . . . + αµΠ(x, aµ)

= u + A1 log v1 + A2 log v2 + . . . (119)

The problem (118) is thus reduced to the three following ones:

A) To find all the possible cases in which

(1 − y2)(1 − c′2 y2) = p2(1 − x2)(1 − c2x2)

with y and p rational functions of x (c, c′ are constants).

B) To reduce ̟(y, c′), ̟0(y, c′) and Π(y, c′, a), where y and c′ are as in A), to

the form

r + A̟x + A0̟0x + A′Π(x, a′) + A′′Π(x, a′′) + . . .

C) To find the necessary and sufficient conditions for (119) to be satisfied.

The third chapter (p. 557–565) is devoted to the solution of problem C), where

one may suppose that u, v1, v2, . . . , vν are of the form p + q∆x, p and q rational

in x. Abel takes the problems dealt with in the second chapter of his unpublished

memoir Théorie des transcendantes elliptiques (see our §4) in a more general setting.

Equation (119) is rewritten

ψx = u +
∑

A log v,

where ψx = β̟x + β0̟0x + β1Πα1 + β2Πα2 + . . . + βnΠαn and Παm =
∫

dx
(

1− x2

α2
m

)

∆x

; it is supposed that it is impossible to find any similar relation

not containing all the Παm and that all the αm are different from ±1 and

± 1
c
. Changing the sign of ∆x, we obtain −ψx = u′ +

∑

A log v′ and then

2ψx = u − u′ +
∑

A log v
v′ . Changing the sign of x without changing that of

∆x, we obtain −2ψx = u′′ − u′′′ +
∑

A log v′′
v′′′ and

ψx =
1

4
(u − u′ − u′′ + u′′′) +

1

4

∑

A log
vv′′′

v′v′′ .

If v = p+qx + (p′ +q′x)∆x where p, q, p′, q′ are even functions, v′ = (p+qx)−
(p′ + q′x)∆x, v′′ = (p − qx) + (p′ − q′x)∆x and v′′′ = p − qx−(p′ − q′x)∆x.

Thus vv′′′
v′v′′ = fx+ϕx·∆x

fx−ϕx·∆x
where fx and ϕx are polynomials, one even and the other one

odd. The algebraic part 1
4
(u − u′ − u′′ + u′′′) is of the form r∆x where r is an odd

rational function of x and we may rewrite our equation in the form

ψx = r∆x +
∑

A log
fx + ϕx · ∆x

fx − ϕx · ∆x
(120)

with A in place of 1
4

A. We may suppose that there is no linear relation with integer

coefficients between the Am , otherwise it would be possible to reduce the number ν

of the terms in the sum.
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Differentiating one term ρ = log fx+ϕx·∆x

fx−ϕx·∆x
, we obtain dρ = vdx

θx·∆x
where

θx = ( fx)2 − (ϕx)2(∆x)2 and vϕx = 2 f ′xθx − fxθ ′x,

so that v is an even polynomial. If the roots of θx are ±a1,±a2, . . . ,±aµ, the

decomposition of v
θx

in simple elements is of the form k + β′
1

a2
1−x2 + β′

2

a2
2−x2 + . . . +

β′
µ

a2
µ−x2 where k is a constant and β′

j = 2m ja j
fa j

ϕa j
= −2m ja j∆a j where m j is the

multiplicity of a j as a root of θx. Thus the differentiation of (120) gives, after

multiplication by ∆x:

β + β0x2 +
α2

1β1

a2
1 − x2

+
α2

2β2

a2
2 − x2

+ . . . +
α2

nβn

a2
n − x2

=
dr

dx
(∆x)2 − r((1 + c2)x − 2c2x3)

+ A1

(

k1 −
2m1a1∆a1

a2
1 − x2

−
2m2a2∆a2

a2
2 − x2

− . . .

)

+ A2

(

k2 −
2m′

1a′
1∆a′

1

a1
′2 − x2

−
2m′

2a′
2∆a′

2

a2
′2 − x2

− . . .

)

+ . . . .

From this relation, Abel deduces that r = 0 and that only one of the coefficients Am

may be different from 0. He takes A1 = 1, A2 = A3 = . . . = Aν = 0 and finds

β = k1, β0 = 0, α1 = a1, α2 = a2, . . . , β1 = − 2m1∆a1
a1

, β2 = − 2m2∆a2
a2

, . . . . The

most general relation between elliptic integrals with the same modulus is thus of the

form

β̟x −
2m1∆α1

α1

Πα1 − . . . −
2mn∆αn

αn

Παn

= log
fx + ϕx · ∆x

fx − ϕx · ∆x
+ C (121)

where the parameters α1, α2, . . . , αn are related by the equation

( fx)2−(ϕx)2(1−x2)(1−c2x2) = (x2−α2
1)

m1(x2−α2
2)

m2 . . . (x2−α2
n)

mn . (122)

Abel remarks that this implies

m1̟α1 + m2̟α2 + . . . + mn̟αn = C and

m1Π
′α1 + m2Π

′α2 + . . . + mnΠ
′αn = C −

a

2∆a
log

fa + ϕa · ∆a

fa − ϕa · ∆a

if Π ′α =
∫

dα
(

1− α2

a2

)

∆α
.

When n = 1, α1 = α and m1 = m we have Πα = βα

2m∆α
̟x − α

2m∆α
log fx+ϕx·∆x

fx−ϕx·∆x

if the parameter α verifies
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( fx)2 − (ϕx)2(1 − x2)(1 − c2x2) = (x2 − α2)m . (123)

For m = 2, fx = ax is of degree 1, ϕx = 1
c

√
−1 is constant and (x2 − α2)2 =

x4 −
(

1+c2

c2 − a2
)

x2 + 1

c2 and this gives a = 1 ∓ 1
c
, α = 1√

±c
. For m = 3 and fx

odd, fx = x3 + ax, ϕx = b and

(x3 + ax)2 − b2(1 − x2)(1 − c2x2) = (x2 − α2)3,

equation which leads to α3 = b, α3 + aα + b∆α = 0, 2a − c2b2 = −3α2, a2 +
(1 + c2)b2 = 3α4. This gives a = 1

2
(c2α6 − 3α2) and α determined by the equation

∆α = 1
2
(1 − c2α4).

Generally, as Abel states, α must be a zero or a pole of the function xm defined

in the first chapter and such that dxm

∆xm
= m dx

∆x
(xm = 0 for x = 0). Indeed we have

p2 − q2(∆x)2 = (x2 − α2)m(x2 − αm)

where αm is the value of xm for x = α (chapter I) and, multiplying by (123), we

obtain

(p fx ± qϕx(∆x)2)2 − (pϕx ± q fx)2(∆x)2 = p2( fx)2 − q2(ϕx)2(∆x)4

= (x2 − α2)2m(x2 − αm).

It results that p fx +qϕx(∆x)2 or p fx −qϕx(∆x)2 is divisible by (x2 −α2)m and we

have a relation r2 − ρ2(∆x)2 = x2 − α2
m where r, ρ are polynomials, one even and

the other odd. But this relation implies that ρ = 0 and that αm = 0 or 1
0
. Conversely,

it is easy to see that such an α satisfies an equation (123). Abel remarks that, in these

cases, the coefficient β in (121) is always different from 0, so that there is no elliptic

differential of the third kind integrable by algebraic and logarithmic functions.

When n = 3 and m1 = m2 = m3 = 1, (121) takes the form

∆α1

α1

Πα1 +
∆α2

α2

Πα2 =
∆α

α
Πα + β̟x −

1

2
log

fx + ϕx · ∆x

fx − ϕx · ∆x

where fx = x3 + ax, ϕx = b and (x3 + ax)2 − b2(1 − x2)(1 − c2x2) = (x2 − α2)

×(x2 − α2
1)(x2 − α2

2). This gives α = α1∆α2+α2∆α1

1−c2α2
1α2

2

, b = αα1α2,

a =
1

2
(c2α2α2

1α
2
2 − α2 − α2

1 − α2
2),

∆α

α
=

α2 + a

αα1α2

, β = −c2αα1α2

(cf. chapter I). In particular, for α2 infinite, α = ± 1
cα1

and Πα + Π
(

1
cα

)

= ̟x +
1
2

α
∆α

log x∆α+α∆x
x∆α−α∆x

. Other relations between two elliptic integrals of the third kind are

obtained by (121) with n = 2.

In the fourth chapter (p. 565–606), Abel solves the problem A) of the second

chapter, that is to satisfy the equation (1 − y2)(1 − c′2 y2) = r2(1 − x2)(1 − c2x2),

y and r being rational functions of x. Since 1 − y2 and 1 − c′2 y2 have no common
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factor (c′ �= 1), this equation implies 1− y2 = r2
1ρ, 1−c′2 y2 = r2

2ρ
′ where r1, r2 are

rational functions of x, r1r2 = r and ρρ′ = (1 − x2)(1 − c2x2). Differentiating, we

obtain −2ydy = r1(r1dρ+2ρdr1), −2c′2 ydy = r2(r2dρ′ +2ρ′dr2) which show that

the numerator of dy

dx
is divisible by r1 and r2, and so by their product r: dy

dx
= rv where

v is a rational function without any pole among the zeros of r. Let y = p

q
, irreducible

fraction where p, q are polynomials of respective degrees m, n. One has r = θ

q2

where θ is a polynomial and θv = q2 dy

dx
= qdp−pdq

dx
, whence v is a polynomial. If

m > n, the equation

(q2 − p2)(q2 − c′2 p2) = θ2(1 − x2)(1 − c2x2)

shows that 4m = 2µ + 4 where µ is the degree of θ. If ν is the degree of v, we

then see that µ + ν = m + n − 1 and ν = m + n − 1 − ν < 2m − µ − 1 = 1.

Thus ν = 0 and v is constant. In the same way, if n > m, we have 4n = 2µ + 4,

ν < 2n − µ − 1 = 1 and ν = 0. In the remaining case, in which m = n, it is for

instance possible that q − p = ϕ be of degree m − k < m. Then 4m − k = 2µ + 4

and µ + ν = 2m − k − 1 for θv = pdϕ−ϕdp

dx
and ν = 2m − k − 1 − µ = 1 − 1

2
k is

again 0. In any case v is a constant ε and

dy
√

(1 − y2)(1 − c′2 y2)
=

εdx
√

(1 − x2)(1 − c2x2)
. (124)

The second result announced in the introduction is thus demonstrated.

It remains to determine the rational function y and the transformed modulus c′.
Abel begins by considering the case in which y = α+βx

α′+β′x and he explains the

6 cases already met in Sur le nombre de transformations différentes . . . (our §7).

He then considers the case in which y = ψx = A0+A1x+A2x2+...+Aµxµ

B0+B1x+B2x2+...+Bµxµ (irreducible

fraction, one of the coefficients Aµ, Bµ different from 0). The treatment uses only the

addition theorem for elliptic integrals of chapter I and not the elliptic function λ and

its double periodicity as in the preceding memoirs; but the lines are similar. If x, x′

are two roots of the equation y = ψx, one has dx
∆x

= 1
ε

dy

∆′y = dx′
∆x′ and consequently

x′ = x∆e+e∆x

1−c2e2x2 = θx where e is a constant. Thus ψ(θx) = ψx and we see that the

equation y = ψx has the roots x, θx, θ2x, . . . , θn x, . . . where it is easy to see that

θn x =
x∆en + en∆x

1 − c2e2
n x2

,

en being the rational function of e defined by den

∆en
= n de

∆e
and en = 0 for e = 0 (see

chapter I). Since the equation has only µ roots, there exists an n such that θn x = x

that is en = 0 and ∆en = 1. These equations are equivalent to ∆en

1−c2e2
n

= 1, which is

of degree n2 in e. The number n must be minimal and we must eliminate the roots e

which would lead to eµ = 0, ∆εµ = 1 for a µ < n. If, for instance, n is a prime

number, the root e = 0 is to be eliminated and it remains n2 − 1 solutions e.

Let us suppose that two rational functions ψz = p

q
, ψ ′z = p′

q′ where p, q, p′, q′

are polynomials of degree µ and the two fractions are irreducible. If the equations
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y = ψ(x) and y′ = ψ ′(x) have the same roots x, x′, x′′, . . . , x(µ−1) we have p−qy

p′−q′ y′ =
a−by

a′−b′y′ where a, b, a′, b′ are the respective coefficients of zµ in p, q, p′, q′ and z has

any value. We draw y′ = α+βy

α′+β′y ; if moreover y and y′ correspond to the same

modulus c′, we have y′ = 1
c′y .

When n = µ, the roots of y = ψx are x, θx, . . . , θn−1x and

p − qy = (a − by)(z − x)(z − θx) · · · (z − θn−1x). (125)

We can draw y from this equation, giving to z a particular value. If n is odd,

noted 2µ + 1, putting z = 0, we obtain y = a′+ax·θx·θ2x···θ2µx

b′+bx·θx·θ2x···θ2µx
where a′, b′ are the

respective constant terms of p, q. Since en−m = −em and ∆en−m = ∆em , we see

that θn−m x = x∆em−em∆x

1−c2e2
m x2

and θm x · θn−m x = x2−e2
m

1−c2e2
m x2

. It results that the value found

for y is rational in x. Moreover, it is invariant by the substitution x 
→ θx because

θ2µ+1x = x, and it results that (125) is verified for any value of z. For x = ±1 or

± 1
c
, ∆x = 0 and θm x = θ2µ+1−m x, so that

p − qα = (a − bα)(1 − z)ρ2, p − qβ = (a − bβ)(1 + z)ρ′2,

p − qγ = (a − bγ)(1 − cz)ρ′′2, p − qδ = (a − bδ)(1 + cz)ρ′′′2

where α, β, γ, δ are the values of y corresponding to x = 1,−1, 1
c
,− 1

c
and

ρ, ρ′, ρ′′, ρ′′′ are polynomials of degree µ in z. Now we want that

(q2 − p2)(q2 − c′2 p2) = r2(1 − z2)(1 − c2z2)

and this implies that {α, β, γ, δ} =
{

1,−1, 1
c′ ,− 1

c′
}

; conversely, this condition will

be sufficient. Let us take α = 1, β = −1, γ = 1
c′ , δ = − 1

c′ . Since y = a′+aϕx

b′+bϕx
where

ϕx = x · θx · θ2x · · · θ2µx =
x(x2 − e2)(x2 − e2

2) · · · (x2 − e2
µ)

(1 − c2e2x2)(1 − c2e2
2x2) · · · (1 − c2e2

µx2)

is an odd function, we have α = a′+aϕ(1)

b′+bϕ(1)
, β = a′−aϕ(1)

b′−bϕ(1)
, γ =

a′+aϕ
(

1
c

)

b′+bϕ
(

1
c

) , δ =
a′−aϕ

(

1
c

)

b′−bϕ
(

1
c

)

or a′ ∓ b′ ± (a ∓ b)ϕ(1) = 0, a′ ∓ b′
c′ ±

(

a ∓ b
c′
)

ϕ
(

1
c

)

= 0. These equations

are compatible only if a′ or b′ is 0 (c′ �= 1). Let us suppose that a′ = 0 =
b; we have c′ = ϕ(1)

ϕ
(

1
c

) , y = a
b′ ϕx = ϕx

ϕ(1)
where ϕ(1) = 1−e2

1−c2e2

1−e2
2

1−c2e2
2

· · · 1−e2
µ

1−c2e2
µ

,

ϕ
(

1
c

)

= 1

c2µ+1
1−c2e2

1−e2

1−c2e2
2

1−e2
2

· · · 1−c2e2
µ

1−e2
µ

= 1

c2µ+1ϕ(1)
. Then c′ = c2µ+1(ϕ(1))2. In order

to determine the multiplicator ε, Abel uses the value of dy

dx
= ε

∆′y
∆x

for x = 0, which

is ±e2e2
2 · · · e2

µ
1

ϕ(1)
; thus ε = e2e2

2 · · · e2
µ

c
µ+ 1

2√
c′ . He has reconstituted the formulae for

the transformations of odd order 2µ + 1: if e is a root of the equation e2µ+1 = 0

which does not satisfy any other equation e2m+1 = 0 where 2m + 1 is a divisor of

2µ + 1, let us put
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y =
cµ+ 1

2

√
c′

x(e2 − x2)(e2
2 − x2) · · · (e2

µ − x2)

(1 − c2e2x2)(1 − c2e2
2x2) · · · (1 − c2e2

µx2)
,

c′ = c2µ+1

(

(1 − e2)(1 − e2
2) · · · (1 − e2

µ)

(1 − c2e2)(1 − c2e2
2) · · · (1 − c2e2

µ)

)2

,

ε =
cµ+ 1

2

√
c′ e2e2

2 . . . e2
µ. (126)

Then we have dy√
(1−y2)(1−c′2 y2)

= ±ε dx√
(1−x2)(1−c2x2)

. Five other systems (y, c′, ε)

corresponding to the same value of e are obtained by composing with a transforma-

tion of order 1.

For instance, when µ = 1, 2µ + 1 = 3 is prime and we may take for e any

root different from 0 of the equation e3 = 0, that is 0 = 3 − 4(1 + c2)e2 + 6c2e4 −
c4e8 of degree 4 in e2 and the c′ = c3

(

1−e2

1−c2e2

)2

, ε = c
√

c
c′ e

2, y = c
√

c√
c′

x(e2−x2)

1−c2e2x2 .

Eliminating e, we obtain the modular equation in the form

(c′ − c)2 = 4
√

cc′(1 −
√

cc′)2.

The roots of the equation 0 = c
µ+ 1

2√
c′ z(z − e2)(z − e2

2) · · · (z − e2
µ) + y(1 −

c2e2z2)(1 − c2e2
2z2) · · · (1 − c2e2

µz2) are x, θx, . . . , θ2µx, thus x + θx + . . . +

θ2µx = (−1)µ+1c2µe2e2
2···e2

µ

c
µ+ 1

2 c′−
1
2

y. Since θm x + θ2µ+1−m x = 2∆em x

1−c2e2
m x2

, this gives y =
(

x + 2∆e·x
1−c2e2x2 + 2∆e2·x

1−c2e2
2x2

+ . . . + 2∆eµ·x
1−c2e2

µx2

) √
c

cµ
√

c′
(−1)µ+1

e2e2
2···eµ

.

If n is even, noted 2µ, we have θµx = x∆eµ+eµ∆x

1−c2e2
µx2 = x∆eµ−eµ∆x

1−c2e2
µx2 , which imposes

eµ = 0 or 1
0
. In the last case, θµx = ± 1

cx
and θµ+m x = ± 1

cθm x
. Thus the roots of

y = ψx are x,± 1
cx

, θx, . . . , θµ−1x, θµ+1x, . . . , θ2µ−1x and we have

p − qy = (a − by)(z − x)

(

z ∓
1

cx

)

(z − θx)(z − θ2µ−1x) · · ·

×(z − θµ−1x)(z − θµ+1x). (127)

We deduce from this equation that

a′ − b′y = (by − a)

(

x ±
1

cx
+

2∆e · x

1 − c2e2x2
+

2∆e2 · x

1 − c2e2
2x2

+ . . . +
2∆eµ−1 · x

1 − c2e2
µ−1x2

)

where a′ and b′ are the coefficients of z2µ−1 in p and q. It results for y a rational

expression in x, invariant by x 
→ θx. Choosing a = b′ = 0, we obtain

y =
a′

b

1

x ± 1
cx

+ 2∆ex

1−c2e2x2 + . . . + 2∆eµ−1x

1−c2e2
µ−1x2

= A
x(1 − c2e2x2)(1 − c2e2

2x2) · · · (1 − c2e2
µ−1x2)

1 + a1x2 + a2x2 + . . . + aµx2µ
= Aϕx.
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If, for instance, y = 1 when x = 1, we have A = 1
ϕ(1)

and, from (125), q −
p = (1 − z)(1 ∓ cz)ρ2 where ρ is a polynomial in z. Since q is even and p odd,

q + p = (1 + z)(1 ± cz)ρ′2 and

q2 − p2 = (1 − z2)(1 − c2z2)(ρρ′)2.

It results that q2 − c′2 p2 must be a square and c′ = 1
α

, where α is the value of y

corresponding to x = 1√
±c

, satisfies to this condition. Indeed θµ+m x = θ
(

± 1
cx

)

=

θ
(

1√
±c

)

= θx for x = 1√
±c

, so that p − αq is a square and the same may be said of

p+αq. Thus p2−α2q2 = t2 where t is a polynomial in z and (q2− p2)(q2−c′2 p2) =
(1 − z2)(1 − c2z2)r2 for c′ = 1

α
. Sylow observes that α is never 0 nor ∞, but it is

equal to 1 when µ is even and this value does not work for c′. He explains how to

find a correct value in this case (Œuvres, t. II, p. 520–521). Then dy

∆′y = ε dx
∆x

where

ε is the value of dy

dx
for x = 0, that is ε = A = 1

ϕ(1)
. Abel gives an expression of the

denominator q of ϕx as a product b(z − δ)(z − θδ) · · · (z − θ2µ−1δ) where δ is a pole

of y. It is easy to see that δ = 1√
∓c

is such a pole. Thus, if e is a pole of eµ such

the equations em = 0 and ∆em = 1 cannot be satisfied for any divisor m of 2µ, the

formulae

±
ε

c

1

y
= x ±

1

cx
+

2∆ex

1 − c2e2x2
+

2∆e2x

1 − c2e2
2x2

+ . . . +
2∆eµ−1x

1 − c2e2
µ−1x2

,

±ε = c

(

1 ±
1

c
+

2∆e

1 − c2e2
+

2∆e2

1 − c2e2
2

+ . . . +
2∆eµ−1

1 − c2e2
µ−1

)

lead to dy√
(1−y2)(1−c′2y2)

= εdx√
(1−x2)(1−c2x2)

. For instance, when µ = 1, ε = 1 ± c,

y = (1 ± c) x

1±cx2 and c′ = 2
√

±c

1±c
.

Another possible value for e is a root of eµ = 0 such that ∆eµ = −1 (for

∆eµ = 1 would lead to θµx = x). Here θµx = −x, θµ+m x = −θm x and equation

(127) is replaced by

p − qy = (a − by)(z2 − x2)(z2 − (θx)2) · · · (z2 − (θµ−1x)2)

which gives a′ − b′y = ±(a − by)(xθx · · · θµ−1x)2 for z = 0, a′ and b′ denoting

the constant terms of p and q. Thus y is a rational function of degree 2µ of x and

it remains to determine a, b, a′, b′ and c′, ε. For instance, when µ = 1, Abel finds

y = 1+cx2

1−cx2 , c′ = 1−c
1+c

, ε = (1 + c)
√

−1 and he also gives the 5 other possible values

for c′.

When the equation y = ψx has other roots than x, θx, . . . , θn−1x, Abel shows

that the degree µ of this equation is a multiple mn of n and that its roots may be

distributed in m cycles x( j), θx( j), . . . , θn−1x( j), 0 ≤ j ≤ m−1. The proof is identical

with that used for the second theorem of the Mémoire sur une classe particulière

d’éqations . . . published in the same volume of Crelle’s Journal. According to the
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precedind results, there exists a rational function y1 = ψ1x such that the roots of the

equation y1 = ψ1x are x, θx, . . . , θn−1x and that, for convenient c1, ε1

dy1
√

(1 − y2
1)(1 − c2

1 y2
1)

= ε1

dx
√

(1 − x2)(1 − c2x2)
. (128)

Let ψ1z = p′

q′ , so that p′ − q′y = (a′ − b′y)(z − x)(z − θx) · · · (z − θn−1x). If

y j+1 = ψ1x( j) (0 ≤ j ≤ m − 1), we see that p−qy

a−by
= p′−q′ y1

a′−b′y1

p′−q′ y2
a′−b′ y2

· · · p′−q′ ym

a′−b′ym
. Now

let α be a zero and β a pole of ψz and let α1, α2, . . . , αm, β1, β2, . . . , βm be the

corresponding values of y1, y2, . . . , ym ; from the preceding relation we deduce that

p = A′(p′ − α1q′)(p′ − α2q′) · · · (p′ − αmq′) and

q = A′′(p′ − β1q′)(p′ − β2q′) · · · (p′ − βmq′)

where A′ and A′′ are constants, and this gives y = A
(y1−α1)(y1−α2)···(y1−αm )

(y1−β1)(y1−β2)···(y1−βm )
, rational

function of degree m of y1 where A = A′
A′′ . The combination of (124) and (128) gives

the equation

dy
√

(1 − y2)(1 − c′2 y2)
=

ε

ε1

dy1
√

(1 − y2
1)(1 − c2

1 y2
1)

and we see that the transformation of order µ = mn is obtained by composing

a transformation ψ1 of degree n and a transformation of order m. This result permits

to reduce the theory of transformations to the case in which the order is a prime

number.

In the general case, by the above reasoning y = A (x−α)(x−α′)···(x−α(µ−1))

(x−β)(x−β′)···(x−β(µ−1))
where

α, α′, . . . , α(µ−1) are the zeros and β, β′, . . . , β(µ−1) the poles of ψx. Abel considers

in particular the cases in which b or a is 0. When b = 0, the equation

p − qy = a(z − x)(z − x′) · · · (z − x(µ−1)) (129)

implies that a′ − b′y = −a(x + x′ + . . . + x(µ−1)) where a′ and b′ are the respective

coefficients of zµ−1 in p and q. If x∆em+em∆x

1−c2e2
m x2

�= x∆em−em∆x

1−c2e2
m x2

for all m, µ = 2n + 1 is

odd, a′ = 0 and

y = Ax

(

1 +
2∆e1

1 − c2e2
1x2

+ . . . +
2∆en

1 − c2e2
n x2

)

.

Therefore q = (1 − c2e2
1x2) · · · (1 − c2e2

n x2) and p is obtained by making x = 0 in

(129):

p = az(z2 − e2
1) · · · (z2 − e2

n) and

y = a
x(e2

1 − x2)(e2
2 − x2) · · · (e2

n − x2)

(1 − c2e2
1x2)(1 − c2e2

2x2) · · · (1 − c2e2
n x2)

.
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On the contrary, if x∆e+e∆x

1−c2e2x2 = x∆e−e∆x

1−c2e2x2 , e = 0 or 1
0
. When e = 1

0
, x′ = ± 1

cx
,

µ = 2n is even, a′ = 0 and y = A

(

x ± 1
cx

+ 2x∆e1

1−c2e2
1x2 + . . . + 2x∆en−1

1−c2e2
n−1x2

)

=

a(1−δ2
1x2)(1−δ2

2x2)···(1−δ2
n x2)

x(1−c2e2
1x2)(1−c2e2

2x2)···(1−c2e2
n−1x2)

. When e = 0, x′ = −x and one finds that p and q

have the same degree, contrary to the hypothesis.

When a = 0, p − qy = by(z − x)(z − x′) · · · (z − x(µ−1)) and it results that

y = a
(1 − c2e2

1x2)(1 − c2e2
2x2) · · · (1 − c2e2

n x2)

x(e2
1 − x2)(e2

2 − x2) · · · (e2
n − x2)

or

a
x(1 − c2e2

1x2)(1 − c2e2
2x2) · · · (1 − c2e2

n−1x2)

(1 − δ2
1x2)(1 − δ2

2x2) · · · (1 − δ2
n x2)

according to the parity of µ.

In particular

x2µ+1 = a
x(e2

1 − x2)(e2
2 − x2) · · · (e2

n − x2)

(1 − c2e2
1x2)(1 − c2e2

2x2) · · · (1 − c2e2
n x2)

= A

(

x +
2∆e1x

1 − c2e2
1x2

+
2∆e2x

1 − c2e2
2x2

+ . . . +
2∆en x

1 − c2e2
n x2

)

where 2n = (2µ + 1)2 − 1. Doing x = 1
0

and 0, one finds Ac2ne2
1e2

2 · · · e2
n = a,

A = 1
2µ+1

and ae2
1e2

2 · · · e2
n = 2µ+1. Thus e2

1e2
2 · · · e2

n = 2µ+1
cn and a = cn = c2µ2+2µ.

The roots of the equation x2µ+1 = y are x,
x∆e1±e1∆x

1−c2e2
1x2 , x∆e2±e2∆x

1−c2e2
2x2 , . . . , x∆en±en∆x

1−c2e2
n x2 .

Let θx = x∆e+e∆x

1−c2e2x2 and θ1x = x∆e′+e′∆x

1−c2e′2x2 be two of these roots such that neither e

nor e′ is a root of x2m+1 = 0 for a divisor 2m + 1 of 2µ + 1 and such that θ1x

is different from x, θx, . . . , θ2µx. Then x, θx, . . . , θ2µx, θ1x, . . . , θ
2µ

1 x are 4µ + 1

distinct roots of x2µ+1 = ψx = y. Thus, for any m and k, ψ(θm x) = ψ(θk
1 x) and

it results that ψ(θk
1θ

m x) = ψ(θ2m x) = x2µ+1, so that θk
1θ

m x is also a root. Now it

is easy to prove that, for 0 ≤ m, k ≤ 2µ, all these roots are different when 2µ + 1

is a prime number. We have thus written the (2µ + 1)2 roots of our equation. Their

expression is

θk
1θ

m x =
x∆em,k + em,k∆x

1 − c2e2
m,kx2

where em,k =
em∆e′

k + e′
k∆em

1 − c2e2
me′2

k

.

The roots of the equation x2µ+1 = 0 are the em,k, where e0,0 = 0. The non-zero roots

are given by an equation of degree 4µ2 + 4µ which may be decomposed in 2µ + 2

equations of degree 2µ with the help equations of degree 2µ + 2. It is the result of

the Recherches of 1827 (see our §3), demonstrated here by a purely algebraic way.

Indeed, if p is a rational symmetric function of e1, e2, . . . , e2µ, it may be expressed

as a rational function ϕe1 of e1 such that ϕe1 = ϕe2 = . . . = ϕe2µ. Replacing

e1 by em,1, we see that ϕem,1 = ϕem,2 = . . . = ϕe2µm,2µ. It results that the sums

ρk = (ϕe1)
k + (ϕe0,1)

k + . . . + (ϕe2µ,1)
k are rational symmetric in the 4µ2 + 4µ
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quantities em,k different from 0 and so rational functions of c. Thus p is the root

of an algebraic equation of degree 2µ + 2 with coefficients rational in c. We may

apply this result to the coefficients of the algebraic equation of which the roots are

e1, e2, . . . , e2µ.

According to the formula (126), the modulus c′ obtained from c by a transfor-

mation of order 2µ + 1 is a rational symmetric function of e1, e2, . . . , e2µ. It is thus

a root of an equation of degree 2µ + 2 (the modular equation). Abel once more

says that this equation seems not to be solvable by radicals. He adds that, since
dx2µ+1

∆x2µ+1
= 2µ+1

ε

dy

∆′y , the multiplication by 2µ + 1 (which is of degree (2µ + 1)2)

may be decomposed in the transformation of order 2µ + 1 from x to y and another

transformation of the same order from y to x2µ+1. Jacobi also used such a decom-

position. The expressions of x2µ+1 and c in y and c′ are given by (126) with a root e′

determined from c′ as e was from c. Thus the modular equation is symmetric in

(c, c′).

Abel recalls the total number of transformed moduli for a given order µ: 6

for µ = 1, 18 for µ = 2 and 6(µ + 1) for µ an odd prime number. Then he

explains the algebraic solution of the equation y = ψx where ψx is a rational

function defining a transformation. It is sufficient to consider the case in which the

order is an odd prime number 2µ + 1 and we know that, in this case, the roots are

x, θx, . . . , θ2µx where θm x = x∆em+em∆x

1−c2e2
m x2 and θ2µ+1x = x. Let δ be a root of 1 and

v = x +δθx +δ2θ2x + . . .+δ2µθ2µx, v′ = x +δθ2µx +δ2θ2µ−1x + . . .+δ2µθx. They

are of the form v = p + q∆x, v′ = p − q∆x where p and q are rational functions of

x and vv′ = s, v2µ+1 +v′2µ+1 = t are rational functions of x. Since they are invariant

by x → θx, they are rational functions of y and we have v = 2µ+1

√

t
2

+
√

t4

4
− s2µ+1.

If v0, v1, . . . , v2µ are the values of v corresponding to the 2µ + 1 roots of 1, we

obtain x = 1
2µ+1

(v0 + v1 + . . . + v2µ), θm x = 1
2µ+1

(v0 + δ−mv1 + . . . + δ−1mµv2µ).

The last chapter of this first part deals with the following problem: “Given an

elliptic integral of arbitrary modulus, to express this function by means of other

elliptic integrals in the most general way.” According to the results of the second

chapter, this problem is expressed by the equation
∫

rdx
∆x

= k1ψ1 y1 + k2ψ2 y2 + . . .+
kmψm ym + V where ϕx =

∫

rdx
∆x

is the given integral, ψ1, ψ2, . . . , ψm are elliptic

integrals of respective moduli c1, c2, . . . , cm, y1, y2, . . . , ym,
∆1 y1
∆x

,
∆2 y2
∆x

, . . . ,
∆m ym

∆x

are rational functions of x and V is an algebraic and logarithmic function. One

may suppose that the number m is minimal and, according to a theorem of the

fourth chapter, one has dy1
∆1 y1

= ε1
dx
∆x

, dy2
∆2 y2

= ε2
dx
∆x

, . . . , dym

∆m ym
= εm

dx
∆x

where

ε1, ε2, . . . , εm are constant. Now, for 1 ≤ j ≤ m, there exists a rational function

x j of x such that ̟(x j, c) = ε( j)̟(x, c j) and it results that there exits a rational

function y of x such that ϕy be expressed as an elliptic integral of modulus c j where

x is the variable.

The part of the memoir published in Crelle’s Journal stops here and Sylow

completed it with a manuscript written by Abel and discovered in 1874. Here the

transformation of elliptic integrals of the second and third kinds is explained. For the

second kind, Abel proposes two methods. The first one is based on the differentiation
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with respect to the modulus c of the equation ̟(y, c′) = ε̟(x, c), which gives

c′ dc′

dc

∫

y2dy

(1 − c′2 y2)∆(y, c′)
+

dy

dc

1

∆(y, c′)

=
dε

dc

∫

dx

∆(x, c)
+ cε

∫

x2dx

(1 − c2x2)∆(x, c)
. (130)

Now one can verify that
∫

x2dx

(1−c2x2)∆(x,c)
= 1

c2−1

x(1−x2)

∆(x,c)
+ 1

1−c2

∫

(1−x2)dx
∆(x,c)

and there

is a similar identity for
∫

y2dy

(1−c′2 y2)∆(y,c′)
. Thus (130) is rewritten

c′

1 − c′2
dc′

dc

(

̟(y, c′) − ̟0(y, c′) −
y(1 − y2)

∆(y, c′)

)

+
dy

dc

1

∆(y, c′)

=
dε

dc
̟(x, c) +

cε

1 − c2

(

̟(x, c) − ̟0(x, c) −
x(1 − x2)

∆(x, c)

)

or ̟0(y, c′) = A̟(x, c)+ B̟0(x, c)+ p where A = ε
(

1 − cdc(1−c′2)

c′dc′(1−c2)

)

− dε(1−c′2)

c′dc′ ,

B = εc(1−c′2)dc

c′(1−c2)dc′ and p = (1−c′2)dc
c′dc′

dy

dc
1

∆(y,c′) + B x(1−x2)

∆(x,c)
− y(1−y2)

∆(y,c′) .

The second method is based on the decomposition of y2 in partial fractions:

y2 =
A

(x − a)2
+

B

x − a
+ S

where a is a pole of y and A, B are constant. If y = 1
ϕx

, A = 1

(ϕ′a)2 and B = − ϕ′′a
(ϕ′a)3

and we have

(1 − x2)(1 − c2x2)(ϕ′x)2 = ε2
(

(ϕx)2 − 1
) (

(ϕx)2 − c′2) . (131)

For x = a, this gives (1−a2)(1−c2a2)(ϕ′a)2 = ε2c′2. Let us differentiate (131) and

make x = a; we obtain 2(1−a2)(1−c2a2)ϕ′aϕ′′a−
(

2(1 + c2)a − 4c2a3
)

(ϕ′a)2 = 0

and we conclude that

A =
1

(ϕ′a)2
=

(1 − a2)(1 − c2a2)

ε2c′2 , B = −
ϕ′′a

(ϕ′a)3
=

−(1 + c2)a + 2c2a3

ε2c′2
.

Thus

∫

y2dy

∆(y, c′)
=

1

εc′2

∫ (

(1 − a2)(1 − c2a2)

(x − a)2
+

2c2a3 − (1 + c2)a

x − a

)

dx

∆(x, c)

+ε

∫

Sdx

∆(x, c)
. (132)

Now d ∆(x,c)
x−a

= −
(

(1−a2)(1−c2a2)

(x−a)2 + 2c2a3−(1+c2)a
x−a

+ c2a2 − c2x2
)

dx
∆(x,c)

and (132)

takes the form:
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∫

y2dy

∆(y, c′)
=

1

εc′2

(

∆(x, c)

a − x
− c2a2̟(x, c) + c2̟0(x, c)

)

+ ε

∫

Sdx

∆(x, c)
.

If the poles of y are a1, a2, . . . , aµ, we finally obtain

εc′2̟0(y, c′) = µ̟0(x, c) − (c2(a2
1 + a2

2 + . . . + a2
µ) − ε2c′2k2)̟(x, c)

+∆(x, c)

(

1

a1 − x
+

1

a2 − x
+ . . . +

1

aµ − x

)

where k is the value of y for x infinite. Abel separately considers the cases in which

k = 0 or k = 1
0
. This last case is reduced to the first one by putting x = 1

cz
. For

example, when

c′ =
2
√

c

1 + c
, y = (1 + c)

x

1 + cx2
and ε = 1 + c ,

̟0(y, c′) = c(1+c)
2

̟0(x, c) + 1+c
2

̟(x, c) − 1+c
2

x∆(x,c)

1+cx2 .

For the integral of the third kind, Abel uses the equation

∫

dy

(a′ − x)∆(y, c′)
=

1

a′ Π(y, c′, a′) +
∫

ydy

(a′2 − y2)∆(y, c′)

and the decomposition in partial fractions

1

a′ − y
= k′ +

1

ε∆(a′, c′)

(

∆(a1, c)

a1 − x
+

∆(a2, c)

a2 − x
+ . . . +

∆(aµ, c)

aµ − x

)

which lead to

∆(a′, c′)

a′ Π(y, c′, a′) + ∆(a′, c′)

∫

ydy

(a′2 − y2)∆(y, c′)

= k1̟(x, c) +
∑ ∆(a, c)

a
Π(x, c, a) + v

where k1 is a constant and v is an algebraic and logarithmic function. Now the sum

of µ integrals in the right hand side may be reduced to a single integral with the help

of the result of the third chapter: if α is determined by

( fx)2 − (ϕx)2 (∆(x, c))2 = (x2 − a2
1)(x2 − a2

2) · · · (x2 − a2
µ)(x2 − α2)

where fx and ϕx are polynomials, one even and the other odd, according to (121)

we have
∑ ∆(a,c)

a
Π(x, c, a) = k2̟(x, c)+ ∆(α,c)

α
Π(x, c, α)− 1

2
log fx+ϕx·∆(x,c)

fx−ϕx·∆(x,c)
. The

coefficients of fx and ϕx are determined by the equations fam + ϕam · ∆(am, c) =
0(1 ≤ m ≤ µ) and the sign of ∆(α, c) by fα + ϕα∆(α, c) = 0. Another way to

do this reduction consists in observing that if a is any one of a1, a2, . . . , aµ, that is

a root of a′ = ψ(x), any other has the form am = a∆(em ,c)+em∆(a,c)

1−c2e2
ma2

where em does

not depend of a. The same formula (121) with n = 3 and m1 = m2 = m3 = 1 gives
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∆(am, c)

am

Π(x, c, am) =
∆(a, c)

a
Π(x, c, a) + βm̟(x, c)

+
∆(em, c)

em

Π(x, c, em) + log Sm

and Abel shows that
∑ ∆(em ,c)

em
Π(x, c, e) = 0.

A posthumous paper, Mémoire sur les fonctions transcendantes de la forme

∫ ydx, où y est une fonctions algébrique de x (Œuvres, t. II, p. 206−216) contains

extensions of the preceding results to more general Abelian integrals. Abel first con-

siders µ integrals r j =
∫

y jdx(1 ≤ j ≤ µ) where y j is an algebraic function of x and

he supposes that they are related by an algebraic relation R = ϕ(r1, r2, . . . , rµ) = 0

where ϕ is a polynomial with coefficients algebraic with respect to x and µ is

minimal. He proves that in that case there is a linear relation

c1r1 + c2r2 + . . . + cµrµ = P (133)

where c1, c2, . . . , cµ are constant and P is a rational function of x, y1, y2, . . . , yµ.

Indeed, one may suppose that R = rk
µ + Prk−1

µ + P1rk−2
µ + . . . is irreducible with re-

spect to rµ (the coefficients P, P1, . . . being rational with respect to r1, r2, . . . , rµ−1).

By differentiation, one obtains

rk−1
µ (kyµ + P′) +

(

(k − 1)Pyµ + P′
1

)

rk−2
µ + . . . = 0 ,

hence kyµ + P′ = 0 and krµ + P = constant. This gives k = 1 and R = rµ + P = 0.

Now the decomposition of P in partial fractions with respect to rµ−1 has the form

P =
∑ Sk

(rµ−1 + tk)k
+

∑

vkrk
µ−1,

where tk and vk are rational with respect to r1, r2, . . . , rµ−2; by differentiation,

∑

(

−
kSk(yµ−1 + t ′k)

(rµ−1 + tk)k+1
+

S′
k

(rµ−1 + tk)k

)

+
∑

(v′
krk

µ−1 + kvkrk−1
µ−1 yµ−1) = −yµ

and this relation implies that Sk = 0 and v′
k = 0. Moreover, if k is not equal to 1, we

must have kvk yµ−1 + v′
k−1 = 0, but this would imply kvkrµ−1 + vk−1 = constant,

which is impossible. So k = 1 and P = v1rµ−1 + P1 where v1 is a constant and

P1 is rational with respect to r1, r2, . . . , rµ–2. In the same way, we obtain, with

a slight change of notation, Pj = vµ−1− jrµ−1− j + Pj+1(0 ≤ j ≤ µ − 2) where

v1, v2, . . . , vµ−1 are constant and Pj is rational with respect to r1, r2, . . . , rµ−1− j .

Finally, we have rµ + vµ−1rµ−1 + vµ−2rµ−2 + . . . + v1r1 + v0 = 0 where v0 is

an algebraic function of x and this gives a relation of the form (133) where P is

algebraic in x. Let Pk + R1 Pk−1 + . . . = 0 be the minimal equation of P with coef-

ficients rational in x, y1, y2, . . . , yµ. Differentiating, we get (kdP + dR1)Pk−1 +
((k −1)R1dP +dR2) Pk−2 + . . . = 0 with dP

dx
= c1 y1 + c2 y2 + . . . , so that
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kdP + dR1 = 0 and P = − R1
k

+ constant. This gives k = 1 and P = −R1, ra-

tional with respect to x, y1, y2, . . . , yµ.

In his next theorem, Abel considers a relation

c1r1 + c2r2 + . . . + cµrµ = P + a1 log v1 + a2 log v2 + . . . + am log vm (134)

where v1, v2, . . . , vm are algebraic functions of x and P is a rational function of

x, y1, y2, . . . , yµ, v1, v2, . . . , vm . If vm is root of an equation of degree n with

coefficients rational in x, y1, y2, . . . , yµ, v1, v2, . . . , vm−1, let v′
m, v′′

m, . . . , v(n)
m be

its n values. One has

c1r1 + c2r2 + . . . + cµrµ =
1

n
(P′ + P′′ + . . . + P(n))

+a1 log v1 + a2 log v2 + . . . + am−1 log vm−1

+
1

n
am log(v′

mv′′
m · · · v(n)

m )

where P′ + P′′ + . . . + P(n) and v′
mv′′

m · · · v(n)
m are rational in x, y1, y2, . . . , yµ,

v1, v2, . . . , vm−1. Iterating we finally obtain c1r1 + c2r2 + . . . + cµrµ = P +
α1 log t1 + α2 log t2 + . . . + αm log tm where P, t1, . . . , tm are rational functions of

x, y1, y2, . . . , yµ.

In particular, if y is an algebraic function of x and ψ(x, y) a rational func-

tion such that the integral ∫ψ(x, y)dx is algebraic in x, y, log v1, log v2, . . . ,

log vm , then this integral may be expressed in the form P + α1 log t1 + α2 log t2 +
. . . + αm log tm where P, t1, . . . , tm are as above. If there is a relation ∫ψ(x, y)dx +
∫ψ1(x, y1)dx = R where R is of the form of the right hand side of (134), and if

the minimal equation for y1 remains irreducible after adjunction of y, then one has

separately ∫ψ(x, y)dx = R1 and ∫ψx(x, y1)dx = R2. For if y′
1, y′′

1 , . . . , y
(n)
1 are the

values of the algebraic function x,

nψ(x, y)dx + (ψ1(x, y′
1) + ψ1(x, y′′

1) + . . . + ψ1(x, y
(n)
1 ))dx

= d(R′ + R′′ + . . . + R(n)) ,

hence a relation ∫ψ(x, y)dx = 1
n
(R′ + R′′ + . . . + R(n)) − ∫ f(x)dx = R1 and

then ∫ψx(x, y1)dx = R − R1 = R2. If there is a relation ∫ ydx = R where y =
p0+ p1s− 1

n + p2s− 2
n +. . .+ pn−1s− n−1

n , p0, p1, . . . , pn−1, s algebraic functions such

that s
1
n is not rational in p0, p1, . . . , pn−1, s, then one has separately

∫

pm dx

s
m
n

= R j

(0 ≤ m ≤ n − 1). Indeed dR = d f
(

s
1
n

)

= ψ
(

s
1
n

)

dx and the same relation is true

for any value αks
1
n of s

1
n (α primitive n-th root of 1). It is easy to deduce that

∫

pmdx

s
m
n

=
1

n
( f( n

√
s) + αm f(α n

√
s) + . . . + α(n−1)m f(αn−1 n

√
s)) .

The rest of the paper is not finished. Abel studies the cases in which an integral

y =
∫

f (x, (x − a1)
1

m1 , (x − a2)
1

m2 , . . . , (x − an)
1

mn )dx
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( f is rational) is an algebraic function, and the corresponding reductions of Abelian

integrals. According to the preceding results, he is reduced to
∫

dx · p · (x − a1)
− k1

m1 (x − a2)
− k2

m2 · · · (x − an)
− kn

mn

= P = v(x − a1)
1− k1

m1 (x − a2)
1− k2

m2 · · · (x − an)
1− kn

mn

where p and v are rational and k1
m1

,
k2
m2

, . . . , kn

mn
are between 0 and 1. This gives

p = v(A0 + A1x + . . . + An−1xn−1)

+
dv

dx
(x − a1)(x − a2) · · · (x − an) = vϕx +

dv

dx
fx

where

A0 + A1x + . . . + An−1xn−1

=
(

1 −
k1

m1

)

(x − a2)(x − a3) · · · (x − an)

+
(

1 −
k2

m2

)

(x − a1)(x − a3) · · · (x − an) + . . .

+
(

1 −
kn

mn

)

(x − a1)(x − a2) · · · (x − an−1) .

Abel explains the cases in which v = xm or 1
(x−α)m . In the first case

p = xm(A0 + A1x + . . . + An−1xn−1)

+ mxm−1(B0 + B1x + . . . + Bn−1xn−1 + xn)

= m B0xm−1 + (A0 + m B1)xm + (A1 + m B2)xm+1 + . . .

+ (An−1 + m)xn+m−1.

Putting
∫

xµdx(x − a1)
− k1

m1 (x − a2)
− k2

m2 · · · (x − an)
− kn

mn = Rµ, he gets

Rm+n−1 =
1

m + An−1

xm(x − a1)
1− k1

m1 (x − a2)
1− k2

m2 · · · (x − an)
1− kn

mn

−
m B0

m + An−1

Rm−1 − . . . −
An−2 + m Bn−1

m + An−1

Rm+n−2

a recursion formula which permits to express Rm+n−1 by R0, R1, . . . , Rn−2.

In the second case

p =
ϕx

(x − α)m
−

m fx

(x − α)m+1

= −
m fα

(x − α)m+1
+

ϕα − m f ′α

(x − α)m
+

ϕ′α − m f ′′α
2

(x − α)m−1
+ . . .

+
ϕ(n−1)α

1·2···(n−1)
− m

f (n)α

12···n

(x − α)m−n+1
.
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Putting
∫

dx
(x−α)µ

(x − a1)
− k1

m1 (x − a2)
− k2

m2 · · · (x − an)
− kn

mn = Sµ, he gets

(x−a1)
1− k1

m1 (x−a2)
1− k2

m2 ···(x−an)
1− kn

mn

(x−α)m

= −m fαSm+1 + (ϕα − m f ′α)Sm + . . . +
(

ϕn−1α

1·2···(n−1)
− m f (n)α

1·2···n

)

Sm−n+1.

If fα �= 0, this permits to express Sm+1 in S1, R0, R1, . . . , Rn−2. If fα = 0 but

ϕα − m f ′α �= 0, Sm is a linear combination of R0, R1, . . . , Rn−2. Now

ϕa1 − m f ′a1 =
(

1 −
k1

m1

− m

)

(a1 − a2) · · · (a1 − an) �= 0,

so that the Sm with ‘parameter’ a1 are linear combinations of R0, R1, . . . , Rn−2.

By the same method, Abel proves that a linear relation

c0 R0 + c1 R1 + . . . + cn−2 Rn−2 + ε1t1 + ε2t2 + . . . + εµtµ

= v(x − a1)
1− k1

m1 (x − a2)
1− k2

m2 · · · (x − an)
1− kn

mn ,

where tk =
∫

dx
(x−αk)

µ (x − a1)
− k1

m1 (x − a2)
− k2

m2 · · · (x − an)
− kn

mn , is not possible. He

finally proves that, in a relation c0 R0 + c1 R1 + . . . + cn−2 Rn−2 + ε1t1 + ε2t2 +
. . .+ εµtµ = P +α1 log v1 +α2 log v2 + . . .+αm log vm , the right hand side may be

reduced to the form νrν−1λν−1+
∑

α
∑

ωk′
log(

∑

(skλkω
k′k)) where ν is the g.c.d. of

m1, m2, . . . , mn , for each k ∈ [0, ν−1], λk = (x −a1)
ℓ1
m1 (x −a2)

ℓ2
m2 · · · (x −an)

ℓn
mn ,

λ j being the remainder of the division of kk j by m j , ω is a primitive ν-th root of 1

and rν−1, s0, s1, . . . , sν−1 are polynomials. First of all, the right hand side has the

form

r0 + r1λ1 + . . . + rν−1λν−1 +
∑

α log(s0 + s1λ1 + . . . + sν−1λν−1)

and when λ1 is replaced by another value ωk′
λ1, λk becomes ωk′kλk. We thus get

ν expressions for the considered integral
∫

fx·dx

λ1
and the terms rkλk with k < ν − 1

disappear from the sum of these expressions. It is then possible to prove that rν−1 = 0

and that the relations of the considered type are combinations of those in which only

one α is different from 0. In this case
∫

fx·dx

λ1
= θ(x, λ1) = log θ(λ1)+ω log θ(ωλ1)+

ω2 log θ(ω2λ1)+ . . .+ων−1 log θ(ων−1λ1) where θ(λ1) = s0 +s1λ1 + . . .+sν−1λν−1

and Abel attacks the determination of the possible forms for fx, but the paper is left

incomplete (see Sylow’s note, Œuvres, t. II, p. 327−329).

9 Series

We saw above (§3) that in his first papers, Abel did not hesitate to use infinite series

in the 18th century manner, that is without any regard to questions of convergence.

On the contrary, when dealing with expansions of elliptic functions (§6), he tried to
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treat the problem much more rigourously. In the meantime, he had read Cauchy’s

lectures at the École Polytechnique and he was impressed by this work. In a letter to

Holmboe (16 January 1826), he writes “On the whole, divergent series are the work

of the Devil and it is a shame that one dares base any demonstration on them. You

can get whatever result you want when you use them, and they have given rise to so

many disasters and so many paradoxes.” Abel then explains that even the binomial

formula and Taylor theorem are not well based, but that he has found a proof for the

binomial formula and Cauchy’s lectures contain a proof for Taylor theorem.

The memoir Recherches sur la série 1 + m
1

x + m(m−1)

1·2 x2 + m(m−1)(m−2)

1·2·3 x3 + . . . ,

published in the first volume of Crelle’s Journal (1826; Œuvres, t. I, p. 219−250) is

devoted to a rigourous and general proof of the binomial formula. We have already

explained the formal part of this memoir (§1) and we shall now analyse the part

where Abel studies questions of convergence. Abel defines a convergent series as

a series v0 + v1 + v2 + . . . + vm + . . . such that the partial sum v0 + v1 + v2 +
. . . + vm gets indefinitely nearer to a certain limit, which is called the sum of the

series, for increasing m, and he states Cauchy’s criterium for convergence. The first

theorem says that a series ε0ρ0 + ε1ρ1 + ε2ρ2 + . . . + εmρm + . . . is divergent

when ρ0, ρ1, ρ2, . . . are positive numbers such that
ρm+1

ρm
has a limit α > 1 and

the εm do not tend towards 0. On the contrary (theorem II), if the limit α is < 1

and the εm remain ≤ 1, the series is convergent. The proof uses the comparison of

ρ0 +ρ1 + . . .+ρm + . . . with a convergent geometric series and Cauchy’s criterium.

In the third theorem, Abel considers a series

t0 + t1 + . . . + tm + . . .

of which the partial sums pm = t0 + t1 + . . . + tm remain bounded by some

quantity δ and a decreasing sequence of positive numbers ε0, ε1, . . . , εm, . . . The

theorem states that

r = ε0t0 + ε1t1 + ε2t2 + . . . + εm tm

remains bounded by δε0. Abel uses what is now called ‘Abel transformation’, putting

t0 = p0, t1 = p1 − p0, t2 = p2 − p1, . . . so that r = p0(ε0 − ε1) + p1(ε1 − ε2) +
. . . + pm−1(εm−1 − εm) + pmεm ≤ δε0.

Theorem IV concerns a power series fα = v0 + v1α + v2α
2 + . . . + vmαm + . . .

and it says that if the series is convergent for a (positive) value δ of α, it remains

convergent for the (positive) values α ≤ δ and, for such an α, the limit of f(α − β)

for β → 0 is fα. Abel puts ϕα = v0 + v1α + v2α
2 + . . . + vm−1α

m−1 and ψα =
vmαm + vm+1α

m+1 + . . . =
(

α
δ

)m
vmδm +

(

α
δ

)m+1
vm+1δ

m+1 + . . . ≤
(

α
δ

)m
p where

p ≥ vmδm, vmδm + vm+1δ
m+1, vmδm + vm+1δ

m+1 + vm+2δ
m+2, . . . (theorem III),

and this bound is arbitrarily small for m sufficiently large. Now fα − f(α − β) =
ϕα − ϕ(α − β) + ψα − ψ(α − β) and, since ϕα is a polynomial, it is sufficient to

bound ψα − ψ(α − β) by
(

(

α
δ

)m +
(

α−β

δ

)m)

p, which is easy to do.

In the following theorem, the coefficients v0, v1, . . . are continuous functions of

x in an interval [a, b] and Abel says that if the series is convergent for a value δ of α,
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its sum fx for α < δ is a continuous function in [a, b]. Unfortunately, this theorem is

not quite correct. Abel’s proof consists in writing fx = ϕx +ψx where ϕx is the sum

of the terms up to m−1 and ψx is the corresponding remainder, which is bounded by
(

α
δ

)m
θx where θx ≥ vmδm, vmδm + vm+1δ

m+1, vmδm + vm+1δ
m+1 + vm+2δ

m+2, . . .

(theorem III). For each x, this bound tends towards 0 as m → ∞ but the convergence

is not necessarily uniform in x and Abel’s reasoning implicitly uses this uniformity.

Recall that Cauchy stated more generally that the sum of a convergent series of

continuous functions is continuous. In a footnote, Abel criticises this statement,

giving the series sin x − 1
2

sin 2x + 1
3

sin 3x − . . . as a counterexample: the series is

everywhere convergent but its sum is discontinuous for x = (2m+1)π (where it is 0).

Theorem VI correctly states the formula for the product of two absolutely con-

vergent series v0 + v1 + v2 + . . . = p and v′
0 + v′

1 + v′
2 + . . . = p′. Let ρ (resp. ρ′

m)

be the absolute value of vm (resp. v′
m). The hypothesis is that ρ0 +ρ1 +ρ2 + . . . = u

and ρ′
0 + ρ′

1 + ρ′
2 + . . . = u′ are convergent and the conclusion that the series of

general term rm = v0v
′
m + v1v

′
m−1 + v2v

′
m−2 + . . . + vmv′

0 is convergent and that its

sum is equal to pp′. Indeed r0 + r1 + r2 + . . . + r2m = pm p′
m + t + t ′ where

pm = v0 + v1 + . . . + vm, p′
m = v′

0 + v′
1 + . . . + v′

m ,

t = p0v
′
2m + p1v

′
2m−1 + . . . + pm−1v

′
m+1 ,

t ′ = p′
0v2m + p′

1v2m−1 + . . . + p′
m−1vm+1 .

Now |t| ≤ u(ρ′
2m +ρ′

2m−1 + . . .+ρ′
m+1), |t ′| ≤ u′(ρ2m +ρ2m−1 + . . .+ρm+1) so that

t and t ′ tend towards 0. This result had been given by Cauchy in the sixth chapter of

his Analyse algébrique (1821).

As an application, Abel considers two convergent series t0 + t1 + t2 + . . . , t ′0 +
t ′1 + t ′2 + . . . with real terms and such that the series t0t ′0 + (t1t ′0 + t0t ′1) + (t2t ′0 +
t1t ′1 + t0t ′2) + . . . is also convergent. Then the sum of this last series is equal to the

product of the sums of the two given series. Indeed, by theorem IV, it is the limit of

t0t ′0 + (t1t ′0 + t0t ′1)α + (t2t ′0 + t1t ′1 + t0t ′2)α
2 + . . . for α → 1 (α < 1). Since both

series t0 + t1α + t2α
2 + . . . and t ′0 + t ′1α + t ′2α

2 + . . . are absolutely convergent for

α < 1 according to theorem II, the product of their sums is equal to

t0t ′0 + (t1t ′0 + t0t ′1)α + (t2t ′0 + t1t ′1 + t0t ′2)α
2 + . . .

and the conclusion is clear.

In the third volume of Crelle’s Journal, Abel published a Note sur un mémmoire

de M.L. Olivier, ayant pour titre “Remarques sur les séries infinies et leur

convergence” (1828; Œuvres, t. I, p. 399−402). In his memoir, Olivier stated

a wrong criterium for the convergence of a series
∑

an: that nan must tend to-

wards 0. As a counterexample, Abel gives the divergent series of general term

an = 1
n log n

for which nan = 1
log n

tends towards 0. He proves the diver-

gence using the inequality log(1 + x) < x, which gives log
(

1 + 1
n

)

< 1
n

or

log log(1 + n) < log log n + log
(

1 + 1
n log n

)

< log log n + 1
n log n

. It results that

log log(1 + n) < log log 2 + 1
2 log 2

+ 1
3 log 3

+ . . . + 1
n log n

and the divergence follows

from lim (log log(1 + n)) = ∞.
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More generally, Abel proves that there is no function ϕn such that lim(ϕn·an) = 0

be a criterium for the convergence of
∑

an . Indeed, when
∑

an is divergent, the

same is true for the series a1
a0

+ a2
a0+a1

+ a3
a0+a1+a2

+ . . . + an

a0+a1+...+an−1
+ . . . for

log(a0 + a1 + . . . + an) − log(a0 + a1 + . . . + an−1)

= log

(

1 +
an

a0 + a1 + . . . + an−1

)

<
an

a0 + a1 + . . . + an−1

and log(a0 +a1 + . . .+an)− log a0 <
a1
a0

+ a2
a0+a1

+ a3
a0+a1+a2

+ . . .+ an

a0+a1+...+an−1
.

Now if ϕn is a function such that ϕn · an → 0 is a criterium of convergence, the

series

1

ϕ(1)
+

1

ϕ(2)
+

1

ϕ(3)
+

1

ϕ(4)
+ . . . +

1

ϕn
+ . . .

is divergent but

1

ϕ(2). 1
ϕ(1)

+
1

ϕ(3)
(

1
ϕ(1)

+ 1
ϕ(2)

) +
1

ϕ(4)
(

1
ϕ(1)

+ 1
ϕ(2)

+ 1
ϕ(3)

) + . . .

+
1

ϕn
(

1
ϕ(1)

+ 1
ϕ(2)

+ 1
ϕ(3)

+ . . . + 1
ϕ(n−1)

) + . . .

is convergent, which is contradictory.

Abel left unpublished a memoir Sur les séries (Œuvres, t. II, p. 197−205),

probably written at the end of 1827. He begins by giving the definition of convergence

and recalling Cauchy’s criterium. Then the first part deals with series of positive

terms and the second part with series of functions. The first theorem states that if

a series u0 + u1 + u2 + . . . + un + . . . with un ≥ 0 is divergent, then the same

is true of u1
sα
0

+ u2
sα
1

+ u3
sα
2

+ . . . + un

sα
n−1

+ . . . , where sn = u0 + u1 + u2 + . . . + un

and α ≤ 1. It is an immediate extension of the preceding lemma, where α was

taken equal to 1. The following theorem says that, under the same hypotheses,
∑ un

s1+α
n

is convergent when α > 0. Indeed s−α
n−1 − s−α

n = (sn − un)
−α − s−α

n >

α un

s1+α
n

. For example, if un = 1, the first theorem gives the divergence of the series

1 + 1
2
+ 1

3
+ 1

4
+ . . . + 1

n
+ . . . and the second theorem gives the convergence of the

series 1 + 1

2α+1 + 1

3α+1 + 1

4α+1 + . . . + 1

nα+1 + . . . for α > 0. When a series
∑

ϕn is

divergent, a necessary condition for the convergence of
∑

un is that

lim inf
un

ϕn
= 0 .

Indeed, if it is not the case, there exists α > 0 such that pn = un

ϕn
≥ α for n

large enough and
∑

un ≥
∑

α · ϕn is divergent. Thus
∑

un is convergent only if

lim inf nun = 0 but this condition is not sufficient and Abel recalls the final result of

the preceding memoir. Abel next considers a function ϕn increasing without limit,
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implicitly supposed to be differentiable and concave, so that ϕ(n + 1) − ϕn ≤ ϕ′n
and ϕ′(0) + ϕ′(1) + . . . + ϕ′(n) > ϕ(n + 1) − ϕ(0) and this implies the divergence

of ϕ′(0) + ϕ′(1) + . . . + ϕ′(n) + . . . This applies to the iterated logarithm ϕmn =
logm(n + a): ϕ′

nn = 1

(n+a) log(n+a) log2(n+a)··· logm−1(n+a)
and the series

∑ 1

n log n log2 n · · · logm−1 n

is divergent. On the contrary, when ϕn = C − 1
α−1

1

(logm n)α−1 where α > 1,

ϕ(n + 1) − ϕn > ϕ′(n + 1) and ϕ′n < 1
α−1

(

1

(logm (n−1))α−1 − 1

(logm n)α−1

)

. It

results that ϕ′(a) + ϕ′(a + 1) + . . . + ϕ′n < 1
α−1

1

(logm (a−1))α−1 and the series
∑

1

n log n log2 n··· logm−1 n(logm n)1+α is convergent for α > 0. Abel derives from this

statement a rule for the convergence of a series
∑

un: the series is convergent if

lim
log

(

1

unn log n··· logm−1 n

)

logm+1 n
> 1 and it is divergent if this limit is < 1. For instance, in

the first case, there exists an α > 0 such that un < 1

n log n··· logm−1 n(logm n)1+α for n

large enough.

The first result stated by Abel on the series of functions is that when a power series
∑

an xn converges in ] − α, α[, it may be differentiated term by term in this interval.

Abel returns to theorem V of his memoir on the binomial formula, which shows that

he was not satisfied with its proof. He considers ϕ0(y) + ϕ1(y)x + ϕ2(y)x2 + . . . +
ϕn(y)xn + . . . = f(y) and he supposes that it is convergent for 0 ≤ x < α and y

near a value β. Let An be the limit of ϕn(y) when y tends towards β and suppose

that A0 + A1x + . . . + An xn + . . . is convergent. Then the sum R of this series is

the limit of f(y). Abel writes

f(β − ω) − R = (ϕ0(β − ω) − A0) + (x1ϕ1(β − ω) − A1x1) x2 + . . .

+
(

ϕn(β − ω)xn
1 − A1xn

1

)

xn
2 + . . .

where x = x1x2, x1 < α, x2 < 1 and ω tends towards 0 and he chooses m such that

ϕm(β − ω)xm
1 − A1xm

1 ≥ ϕn(β − ω)xn
1 − A1xn

1

for all n, so that f(β − ω) = R + k
1−x2

(ϕm(β − ω)xm
1 − A1xm

1 ) where −1 ≤ k ≤ 1.

Unfortunately, the value of m may depend on ω and the proof is still insufficient. As

Lie remarks in the final notes (Œuvres, t. II, p. 326), it is sufficient to suppose that

there exists M such that

(ϕn(β − ω) − An) αn
0 ≤ M

for all n, for x1 < α0 < α and for ω small enough in order to restaure a correct

proof. Abel applies his theorem to the series
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1yx + 2yx2 + 3yx3 + . . . + nyxn + . . . ,

sin y · x +
1

2
sin 2y · x2 +

1

3
sin 3y · x3 + . . . ,

y

1 + y2
+

y

4 + y2
x +

y

9 + y2
x2 + . . .

continuous functions of y ∈ R when 0 ≤ x < 1; the second one is still convergent

when x = 1, but its sum has discontinuities as a function of y. The third one has 0

for limit when y tends towards ∞, if x < 1, but the limit is π
2

if x = 1. Abel adds

two remarks:

I. the series sin ay

y
+ sin a2 y

y
x + . . . + sin an+1 y

y
xn + . . . is convergent for 0 ≤ x < 1

and y > 0, but when y tends towards 0, the limit An of sin an+1 y

y
is an+1, so that

the series

A0 + A1x + . . . + An xn + . . .

is divergent when ax > 1.

II. the sum of

1+a+. . .+ay−(1+2a+. . .+(y+1)ay)x+(1+3a+. . .+
(y + 1)(y + 2)

2
ay)x2−. . .

is equal to 1
1+x

+ a

(1+x)2 + . . . + ay

(1+x)y+1 = fy for 0 ≤ x < 1 and y integer.

When y → ∞, this sum has for limit 1
1+x−a

if a < 1 + x, but, if a ≥ 1, the

limit of ϕn(y) = 1 + (n + 1)a + . . . +
(

y + n

n

)

ay is infinite and for a < 1, it

is 1

(1−a)n+1 = An . The series A0 + A1x + . . . + An xn + . . . does not converge

when 1 − x ≤ a < 1.

Abel gives an extension of his theorem IV of the memoir on the binomial series

to the case in which a0 + a1α + a2α
2 + . . . is divergent. In this case, if an xn is

positive for n large, the limit of a0 + a1x + a2x2 + . . . for x < α tending towards

α is infinite. The end of the paper contains a proof of Taylor theorem for a function

fx = a0 + a1x + a2x2 + . . . defined by a power series convergent for 0 ≤ x < 1.

A lemma states that if

fx = (a
(0)
0 + a

(0)
1 x + a

(0)
2 x2 + . . . ) + (a

(1)
0 + a

(1)
1 x + a

(1)
2 x2 + . . . ) + . . .

+(a
(n)
0 + a

(n)
1 x + a

(n)
2 x2 + . . . ) + . . .

is convergent for 0 ≤ x < 1 and if A0 = a
(0)
0 + a

(1)
0 + . . . + a

(n)
0 + . . . , A1 =

a
(0)
1 + a

(1)
1 + . . . + a

(n)
1 + . . . , . . . then fx = A0 + A1x + A2x2 + . . . + Am xm + . . .

whenever this series is convergent. Then Abel writes

f(x + ω) = a0 + a1(x + ω) + a2(x + ω)2 + . . .

= a0 + a1x + a2x2 + . . . + (a1 + 2a2x + . . . )ω + . . .

= fx +
f ′x

1
ω +

f ′′x

1 · 2
ω2 + . . .
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if this series is convergent. It remains to prove the convergence under the condition

x + ω < 1. Abel writes x + ω = x1 and x = x1x2, so that x2 < 1 and

xn
1

f n x

1 · 2 · · · n
= xn

1 an + (n + 1)an+1xn+1
1 x2

+
(n + 1)(n + 2)

1 · 2
an+2xn+2

1 x2
2 + . . .

≤ vn

1

(1 − x2)n+1

where vn is the least upper bound of an+kxn+k
1 for k ≥ 0. This gives

ωn f n x

1 · 2 · · · n
≤ vn

(

ω

x1 − x1x2

)n
1

1 − x2

=
vn

1 − x2

where vn tends towards 0.

10 Conclusion

Two main subjects constitute the core of Abel’s work: algebraic equations and

elliptic functions, with an extension to the most general abelian integrals. As we

saw, they are intimately connected. Within our modern terminology, these subjects

may be symbolised by the terms ‘Abelian group’, which refers to a class of solvable

equations discovered by Abel, that is equations with a commutative Galois group,

and by the theorem of Abel on Abelian integrals and the term ‘Abelian variety’.

The theory of algebraic equations was one of the earliest fields of activity of

Abel. He proved the impossibility to solve by radicals the general quintic equation.

But later on he discovered that the so called Abelian equations are algebraically

solvable and he attacked the general problem to characterise solvable equations. He

obtained important results on the form of the solutions of solvable equations, and

this part of the theory was the point of departure of Kronecker’s work in algebra.

Galois attacked the same problem from a different point of view, introducing the

Galois group which measures the indiscernability between the roots.

Abel studied elliptic integrals in Legendre’s Exercices de Calcul Intégral, fol-

lowing Degen’s advice, and he immediately found fundamental new results. At the

same time, Jacobi began to investigate this subject and Abel was stimulated by the

competition with Jacobi. His theory contains all Jacobi’s results up to the year 1829,

but also some results of his own, as the study of the equation of division of an elliptic

integral or of a period of such an integral. Particularly important is his discovery of

complex multiplication which became a favourite subject for Kronecker and one of

the sources of class field theory.

Abel’s extension of the addition theorem for elliptic integrals to the general case

of Abelian integrals is rightly considered as one of the most important discoveries

in the first half of 19th century. It led Jacobi to formulate the inversion problem for
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hyperelliptic integrals. Through the works of Riemann and Clebsch, it became the

base of a new method to study the geometry of algebraic curves. Abel’s method to

prove this theorem contains in germ the notions of divisors and of linear families of

divisors on an algebraic curve and Riemann’s interpretation of Abel’s result leads to

the notion of Jacobian of an algebraic curve.

With Gauss, Bolzano, Cauchy and Dirichlet, Abel is one of the reformators of

rigour in the first half of 19th century. Abel’s transformation of series gave him a way

to prove the continuity of the sum of a power series up to the end of the interval of

convergence in the case in which the series converges in this point. This theorem is

the base of a method of summation for divergent series.

Abel always tried to attack problems in the most general way instead of studying

particular cases and particular objects. In the theory of algebraic equations, he studied

the structure of a general expression built with radicals and he asked under which

conditions such an expression was the root of an algebraic equation of given degree.

In the theory of Abelian integrals, he investigated the most general algebraic relation

between given integrals and he proved that it is reducible to a linear relation. In the

case of elliptic functions, a further reduction led to complex multiplication. This part

of Abel’s work announces Liouville’s investigations on integration in finite terms

and his classification of transcendental functions. We saw the same concern with

generality in Abel’s treatment of functional equations. This general method of Abel

is well ahead of his time and close to the modern conception of axiomatic method.
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[45] P.S. Laplace, Mémoire sur les approximations des formules qui sont fonctions de très

grands nombres (1782), Mém. Ac. Royale des Sc., 1785 = Œuvres, t. 10, p. 209−291

[46] A.-M. Legendre, Exercices de Calcul Intégral, 2 vol., Paris 1811
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