The Legacy of Niels Henrik Abel — The Abel Bicentennial, Oslo 2002
Springer-Verlag 2004. (Editors O. A. Laudal and R. Piene)

The Work of Niels Henrik Abel

Christian Houzel

Functional Equations

Integral Transforms and Definite Integrals
Algebraic Equations

Hyperelliptic Integrals

Abel Theorem

Elliptic functions

~N O R W N =

Development of the Theory of Transformation

of Elliptic Functions

8  Further Development of the Theory of Elliptic Functions
and Abelian Integrals

9  Series

10 Conclusion

References

During his short life, N.-H. Abel devoted himself to several topics characteristic
of the mathematics of his time. We note that, after an unsuccessful investigation
of the influence of the Moon on the motion of a pendulum, he chose subjects in
pure mathematics rather than in mathematical physics. It is possible to classify these
subjects in the following way:

1. solution of algebraic equations by radicals;

2. new transcendental functions, in particular elliptic integrals, elliptic functions,
abelian integrals;

3. functional equations;

. integral transforms;

5. theory of series treated in a rigourous way.

N

The first two topics are the most important and the best known, but we shall
see that there are close links between all the subjects in Abel’s treatment. As the
first published papers are related to subjects 3 and 4, we will begin our study with
functional equations and the integral transforms.
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1 Functional Equations

In the year 1823, Abel published two norwegian papers in the first issue of Ma-
gasinet for Naturvidenskaberne, a journal edited in Christiania by Ch. Hansteen.
In the first one, titled Almindelig Methode til at finde Funktioner af een variabel
Storrelse, naar en Egenskab af disse Funktioner er udtrykt ved en Ligning mellom
to Variable ((Euvres, t. I, p. 1-10), Abel considers a very general type of functional
equation: V(x, y, pa, B, Fy,... ,¢'a, f'B, F'y,...) = 0, where ¢, f, F,... are
unknown functions in one variable and «, 8, y, ... are known functions of the two
independent variables x, y. His method consists in successive eliminations of the
unknown ¢, f, F, ... between the given equation V = 0 and the equations obtained
by differentiating this equation with « constant, then with 8 constant, etc. If, for
instance o = const, there is a relation between x and y, and y may be considered as
a function of x and the constant value of «; if n is the highest order of derivative of
@ present in V, it is possible to eliminate g and its derivatives by differentiating V
n 4+ 1 times with o constant. We then eliminate ff and its derivative, and so on, until
we arrive at a differential equation with only one unknown function of one variable.
Naturally, all the functions, known and unknown, are tacitly supposed indefinitely
differentiable.

Abel applies this to the particular case o = f(x, y, 98, ¢y), where f, o, f and
y are given functions and ¢ is unkown; he gets a first order differential equation
with respect to ¢. For instance, the functional equation of the logarithm logxy =
log x + log y corresponds to the case where a(x, y) = xy, B(x,y) = x, y(x,y) =y
and f(x, y, t, u) =t + u; differentiating with xy = const, we get 0 = x¢'x — y¢'y,
from which, with y = const, we get ¢'x = <, where ¢ = y¢'y. In the same way, the
functional equation for arctangent,

arctan

- arctan x + arctan y,

corresponds to a(x, y) = ff);‘;v, B(x,y) =x, y(x,y) = yand f(x,y,t,u) =t +u;

differentiating with & constant gives 0 = (1 4+ x2)¢'x — (1 + y*)¢'y, whence ¢'x =
e ife=(1+y)¢'y.
When B(x, y) = x, y(x,y) = yand f(x, y,t,u) =t - u, we get first

, O , do
¢y~¢xa——¢x'<ﬂy—=0,
y ax

whence ‘%‘ as a known function of x if y is supposed constant. For o(x, y) = x +y,
this gives % =c = %, so logpx = cx(for ¢(0) = 1) and px = e; for
a(x, y) = xy, % = <, s0logpx = clogx (¢(1) = 1) and px = x°.

All these examples were classical as is the next one, coming from mechanics. The
law of composition of two equal forces making an angle 2x leads to the functional

equation
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ox -y = @(x +y) + px — y); (D

where @x is the ratio of the resultant force to one of the two equal forces. Differ-
entiating with y 4+ x = const, one gets ¢'x - ¢y — ¢x - ¢’y = 2¢/(x — y); another
differentiation, with x — y = const, gives ¢"x - oy — ¢x - ¢”y = 0. If y is regarded as
constant, this gives ¢”x +cgx = 0 and px = « cos(Bx +y) with «, 8 and y constant.
From (1), one sees that « = 2 and y = 0 and the problem imposes ¢ (%) =0, so
B =1and ¢(x) = 2cosx.

Here is another case of application of Abel’s general method: the equation has

the form Yo = F(x, y, ox, ¢'x, ..., fv, f'y,...), where « is a given function of x
and y and ¢, f, ¢ are unknown functions. By differentiating with « constant, one
gets a relation between x, x, ¢’x, ... and y, fy, f’y, ..., whence two differential

equations, with respect to ¢ and to f, considering successively y and x as constant;
if ¢ and f are determined, it is easy to determine i by the functional equation.
In particular, if ¥(x +y) = ¢x - f'y + fy - ¢'x, so that a(x,y) = x + y, the
differentiation with o constant gives ¢x - f”y— fy-¢”x = 0, and ¢x = asin(bx+-c),
fy = d'sin(by + ¢) then Y¥(x + y) = aa'bsin(b(x + y) + ¢ + ¢) so that Yo =
aa'bsin(ba + ¢ + ).

Inthe case of Y(x+y) = flxy)+p(x—y),onegets0 = f'(xy)(y—x)+2¢ (x—y).
Abel takes xy = ¢ as constant and writes ¢’ = ka, where « = x — yand k = %,
so pa = k' + %oez; then he takes x — y = ¢ constant and writes f'8 = ¢ = 2"%", SO
fB ="+ ¢'B. Finally

k
Yx+y) =" +xy+k + SO —y)?

oryoa =’ +c'x(a—x)+k' + %(Zx—oz)2 =+ %az—}—k’—i—xa(c’—Zk)—l— (2k—c')x?
and we see that the condition ¢’ = 2k is necessary; Yo = k' + ¢’ + %az.
The third example is ¢(x + y) = ¢x - fy 4+ fx - ¢y, which gives

O0=¢x-fy—ex-fy+ flx-oy— fx-¢'y 2

if one supposes that f(0) = 1 and ¢(0) = 0, one gets 0 = ¢’x — px - ¢+ fx - ¢/ by
making y = 0 (c = f/(0) and ¢’ = —¢'(0)); so fx = kgx + k'¢'x and, substituting
this value in (2) and making y constant: ¢"x + a¢’x + bpx = 0 etc.

Abel returned to the study of functional equations in the paper “Recherche des
fonctions de deux quantités variables indépendantes x et y, telles que f(x,y), qui
ont la propriété que f(z, f(x, y)) est une fonction symétrique de z, x et y”, published
in German in the first volume of Crelle’s Journal in 1826 (Euvres, t. 1, p. 61-65).
The condition of the title characterises a composition law which is associative and
commutative; it may be written as f(x, y) = f(y, x), f(z, f(x, y)) = f(x, f(y,2)) =
FO, f(z, %) or

fz,r) = fx,v) = f(y, ) 3)

if f(x,y) =r, f(y,z) = vand f(z, x) = s. Differentiating with respect to x, to y
and to z and multiplying the results, one gets
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or dv s _ or dv ds @)
0x dy dz 9y dz ax

i
9z ) )
regarded as constant; in the same manner, ¢x is the quotient of % by g—z, so (4)

But, by the definition of v, the quotient of g—z by %- is a function ¢y when z is

becomes g—;cpy = g—;gox and this gives r as an arbitrary function ¥ of @(x) + @(y),
where @ is a primitive of ¢. So f(x, y) = ¥(®@(x) + @(y)); putting this expression
in (3) and making @z = ®y = 0 and &x = p, one gets ®Yp = p + ¢, where
c = PY(0), and then @ f(x, y) = @(x) + @(y) + c or

Yfx, y) = ¥(x) + ¥() (&)

where ¥(x) = @(x)+c. In other words, Abel finds that f is conjugate to the addition
law by the function ¥: he has determined the one-parameter groups.

The second volume of Crelle’s Journal (1827) ((Euvres, t. 1, p. 389-398) contains
another paper of Abel on a functional equation:

ox + @y = Y(x fy + yfx) = ¥(r), (6)

where r = xfy + yfx; this equation includes, as particular cases, the laws of
addition for log (fy = %y, ox = Yx = logx) and for arcsin (fy = /1 — y?,
@x = Yx = arcsinx). One has ¢’x = Y'r - g—; oy=vY'r- S—C S0 ¢'x - g—; =¢'y- g—;
or

oy (fy+yfx)=¢x- (fx+xfy), ©)

whence, for y = 0,
ac — @'x - (fx +ao'x) =0, (8)
where a = ¢'(0), « = f(0) and &’ = f'(0), a differential equation which deter-

mines ¢ if f is known. Substituting in (7), one gets (fx + &'x)(fy + yf'x) =
(fy+a'y)(fx+xf'y) or

1 1
;(a’fy —fy-fly=dyfly= ;(o/fx — fx- flx —dxf'x) =m,

necessarily constant. So

Fx-(fx+ao'x)+ (mx —ado fx) =0, )
which determines f; as this differential equation is homogenenous, it is easily
integreted by putting fx = xz, in the form log c—logx = % log(z>—n?)+ g—,; log £,

where m = —n? and c is a constant of integration. One gets

CZn — (fx _ nx)ll+0/(fx + nx)nfa/’
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with ¢ = @, then ¢ by (8) and (6) is verified if Yx = ¢ (£) 4 ¢(0). Abel explicitly
treats the case in whichn = o = %: fx=a+ %x, then px = aolog(a + x) + k
and Yx = 2k 4 aalog(a® + x).

The relation «®* = (fx— nx)"*“/ (fx +nx)”_°/, which determines f, allows us to
express fx —nx, and then x and fx, in terms of fx +nx = v; turning back to (8), this

gives px = ni‘fx, log(cnx +c fx). When n = 0, the relation which determines f takes

-\ fx
'x — ([ — — 2
the form e** = (;) and we have px = <7 logca—}—“gf SYx = = logca—i—f%).

The equation (6) signifies that o f (W) = fx - fy and Abel verifies that it is
satisfied. Another particular case is that in which o = co. When m is finite, (9)
reduces to x f'x — fx = 0, so that fx = cx; when m is infinite and equals — pa/, (9)
becomes x fx — px — fx = 0 and fx = pxlogcx. In this last case, one gets by (7)
y¢'y — x¢'x = 0, whence x¢'x = k constant and px = klog mx (a new m) and then
V(pvlog c?v) = klogm?v.

A memoir left unpublished by Abel is devoted to the equation px + 1 = ¢( fx),
where f is given and ¢ unknown (Euvres, t. 11, p. 36-39, mem. VI). Abel introduces
a function ¢ such that fiyy = ¥(y + 1); one may take i arbitrarily on the interval
[0, 1] and define i on [0, +oo[ by ¥(y +n) = f"(¥y) (and on ] — oo, 0] by
Y(y —n) = f"(¥y) if f is bijective). For x = vy, the functional equation
becomes 1 + ¢y = @y(y + 1), so that pyyy = y + xy where yx is any periodic
function of y with period 1. Denoting the inverse function of i by “ir, Abel gets

ox = "Yx + xCihx).

As an example, he takes fx = x” and ¥y = @, so that “yx =

loglog x—logloga

: and
ogn

loglogx — logloga <log logx — log loga)
ox = + X ,

logn logn

for instance px = 10{‘501% if x=0anda =e.

Abel treats in a similar manner the general equation F(x, ¢(fx), ¢(¢¥x)) = 0,
where F, f and ¢ are given functions and ¢ is unknown. Supposing that fx = y,
and Yx = yri1 or yrypr = Y(*fy:), one has F(* fy,, ur, urr1) = 0, where u; = ¢y;;
this difference equation has a solution u, = 6t and ¢z = 6(‘y,). For instance the
equation (¢x)> = ¢(2x) + 2 leads to (u;)> = u,4; +2 and, if u; = a+ %, this gives
U, = a2 + az,%l; on the other hand y, 11 = 2y,, so that y, = ¢ - 2/~ (¢ constant)
and 2'~' = . Finally, ox = b* + b~ (b = a'/%). As we see, this type of equations
is treated with a method different from the preceeding one, by reduction to finite
difference equation.

Another type of functional equation is related to the dilogarithm

2 )C3 n

X X
which Abel studies in the posthumous memoir XIV (Euvres, t. I1, p. 189—-193) after
Legendre’s Exercices de Calcul intégral. The study is based on the summation of
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the series (for |[x| < 1) in the form of an integral

dx
Yx = —/—log(l —X) (10)
0o X

and Abel reproduces several functional equations given by Legendre, as for example

7.[2

Yx + Yl —x) = i log x - log(1 — x).

But he adds a remarkable new property:

X y B y X
(i) - () () b

=¥y — ¥x —log(1 — y)log(1 — x)

for (x, y) in the interior domain of the figure

y
(0,1)

(-1,0

(0,0) (1,0) x

(0’_1)

In order to prove (11), Abel substitutes 1 - % for x in (10):

a y _ ﬂ dy l—a—y
1/f(l—a'l—y)_ /(y+1—y>log(1—a)(1—y)
z_/ﬂlog(l—i>+f@10g(l—y)
y l—a y
—/ dy log<1— a )—i—f dy log(1 —a)
1—y 1—y 11—y
(2 Ny [ & e
v (Z2) e [ m(-5)

—log(1 —a)log(1 —y),
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where the remaining integral is computed by taking z = & as variable:

/ dy log<1— a ):/d—zlog(l—z)=—1ﬂz=—w<L>+const.
1—y 1—y z 1—y

The constant of integration is determined by taking y = 0 and is found to be ya.
Abel was the first mathematician to give a general and (almost) rigourous proof
of Newton’s famous binomial formula

mm—1) , m@m—1)(m—2) 4
X X
2 2-3

A+x)"=1+mx+ + ... (12)
He published his demonstration in the first volume of Crelle’s Journal (1826,
Recherches sur la série 1 + mx + m(”;l)xz + m(mle_);mfz) x>+ ..., Guvres, t. 1,
p- 218-250). He uses an idea of Euler, already exploited by Lagrange and Cauchy:
writing ¢(m) the second member of (12), one proves that

@(m +n) = e(m)e(n), (13)

so that ¢(m) = A™ = (1 4+ x)™ for m rational as was observed by Euler. Lagrange
extended this proof to every value of m admitting that ¢ is an analytic function of m.
Cauchy used an analogous strategy for m real and |x| < 1 using the continuity of ¢,
for which his proof was unfortunately incomplete. Abel considers the most general
case, with x and m complex, with |x| < 1 or |x| = 1 and Rem > —1 (if x = —1,
one needs Rem > 0).

For m = k + K'i, o(m) = f(k,k')(cos¥(k, k') + isiny(k, k'), with f, ¥
continuous functions of k, k' real. The continuity is almost established by Abel
in his theorem V, but this theorem is not entirely correct. The concept of uniform
convergence did not exist at that time and it was not easy to give a general theorem
for the continuity of the sum of a series of continuous functions. The functional
equation (13) becomes

flk+ €,k +10)= flk, k) fe,0); (14)
Yk + 0,k +0) =2mm + Yk, k') + (L, 1),

where m is an integer, which must be constant because of the continuity of . In
a first step, Abel treats the functional equation for /; putting 6k = yr(k, k' + ¢') =
2mm + Yk, k') + (0, £') he gets

Ok +60¢ =a+6(k+ 0), (15)
with a = 2mm + (0, k') + ¥(0, £'), whence
bk = ck + a, (16)

where c is a function of £/, ¢’. Indeed, taking £ = k, 2k, ... , pk in (15) and adding
the results, Abel gets pbk = (p — 1)a + 6(pk) and 8p = p(B(1) — a) +a fork = 1,
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p a natural integer; then, for k = % (u, p €N, p #0), pd (%) =(p—Da+6u

and 6 (%) = c% + a, with ¢ = 6(1) — a. This formula is extended to the negative

values of k using 6(—k) = 2a — 6k and, by continuity, to every real value of k. So
Yk, k' + €' = ck 4+ 2mm + (0, k') + ¥(0, £'), (17)
where ¢ = 6(k’, ), a function of k" and ¢'. For k = 0, this gives
Y0,k + ') = 2mm + (0, k') + (0, ),
a functional equation which may be treated as (15) and which has the solution
¥(0,k) = Bk — 2mm,
with an arbitrary constant 8’; then (17) becomes
Yk, k' +0) =0k, 0 -k+ B (K + ) —2mn,

also equal to 2mm + Y(k, k') + (0, ') = ¥ (k, k') + B¢’ by (14), so that (k, k') =
Fk' -k + B'k' —2mm, with FK' = 6(k’, £') independent of ¢’ and F(k' + ¢') = Fk' =
F(0) = B a constant. Finally

vk, k') = pk + Bk — 2mm. (18)

To treat the functional equation (14) for f, Abel writes f(k, k') = e *K) and
Flk+ ¢,k +¢) = F(k, k') + F(£, £'), a functional equation analog to that for
with m = 0, so its solution is of the form F(k, k') = 8k + §'k’, with two arbitrary
constant 8, §'. Finally

ok + K'i) = % (cos(Bk + B'K) + i sin(Bk + B'K)) (19)

and it remains to determine the constants 8, g, § and §'.
Fork=1landk' =0,¢(1) =1+x =1+acos¢+iasing, wherex = |x| < 1
and ¢ = arg x; this gives ¢’ cos B = 1 + a cos ¢ and ¢’ sin B = a sin ¢, so that

o sin ¢

s 2\1
= (14 2xcos¢p + 2 and tanf=———
¢ ( “ ¢ Fa’) p 14+ acos¢

B=s+pur, (20

with =% <s < 7 and € Z. Now, for k' = 0 and any k, let p = foa and g = O
designate the real and the imaginary part of the series ¢(k), which are continuous

functions of « after Abel’s theorem IV (which is correct); one has

fa = e cos ks cos kum — € sin ks sin ko,
O = € sin ks cos kpm + £ cos ks sin kum
and cos kum = e % ( fo-cos ks +0a-sin ks), sin kumw = e~ (Bar-cos ks — for-sinks),

independent of o by continuity. For & = 0, ¢’ = 1 and s = 0 after (19) whereas
fo=1and 6o =0, so kumwr = 0 and
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fa = (14 2xcos¢ + 052)% cosks, Oa = (1+2acos¢+ a2)§ sinks;  (21)

this is Cauchy’s result for fo + i = |1 + x|¥(cos ks + i sinks) = (1 + x)~.

Abel now considers the case in which m = in is purely imaginary; then the
series (12) is convergent for any value of n by d’Alembert’s rule (which is Abel’s
theorem II) and Abel states its continuity as a function of n as a consequence of his
theorem V. He writes the real and imaginary parts of the series in the form

p=1+xracost +...+ At cosf, + ...
and ¢ = Ajasind; + ...+ A" sinf, + ...,

where A, =618,...8,,0, =nup+y1+y+...+y,and

| — 1
w = d,(cosy, +isiny,).

From (19) he knows that p = & cos B'nand g = & sin B'n; in order to determine

. . 'n /o _
&8 resp. B/, he takes the limits of cosfn-l p-l

& ool
resp. &—27 forn = 0. As 8, — =

andy, - w(u=>2;forp =1,y = %),hegets%" — iandyﬂ - u(p+mn) -3
o)

1 1
,3’=acos¢—§a20052¢+ gaa3cos3¢>—...,
/ . 1 2 1 3
1) :—ozsmd)—{—zoz s1n2¢—§oc sin3¢ + ...

Now, computing in the same manner the limits, for k = 0, of f s L and 97"‘, one gets

from (21)

1 1
8=acos¢—§a200s2¢>+§a300s3¢—... (22)
. L, . I 5.
and B =asing — Ea sin 2¢ + ga sin3¢ — ...,
so that 8/ = § and & = —B. The sum (19) of the series (12) for m = k + ki is
P (cos(Bk + k') + i sin(Bk + 5K))

with 8 and § as in (20). Let us interpret Abel’s result: writing § + i = log(1 + x),
one gets

mlog(l + x) = (k+ ik)(§ +iB) = k8 —k'B+i(kB + K'S),

so that ¢(m) = (1 + x)™.
Comparing (20) and (22), Abel gets

1 1 1
Elog(l +2acosp + a’) = acos¢p — §a20052¢+ 50130053(;5—
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and

i 1 1
arctan % =asing — Eaz sin2¢ + §a3 sin3¢ — ... ; (23)
by making « tend toward &1, 1 log(2+2 cos ¢) = =+ cos d)—% cos 2¢>:l:% cos3¢p—. ..
and 1¢ = sing — $sin2¢ + Isin3¢p — ... for -7 < ¢ < 7. If ¢ = Z and
—1 <& < 1in (23), one gets Gregory’s series arctano: = o — o + %as -
Taking x = i tan ¢ and m real in the binomial series, Abel’s finds

m(m—1)
1-2

m(m—1)(m—2)(m—3)
1-2-3-4

(tan)> + .. )

(tan ¢)* +

cosme¢ = (cos ¢)" (1— (tan ¢)* —. . .),
m(m — 1)(m — 2)

1-2.3

sinm¢ = (cos ¢)" (m tan ¢ —

for % < ¢ < 7 (for ¢ = £7, m mustbe > —1).
Now, taking |x| = 1 and m > —1, he finds as the real part of

14+ x)"(cosa —isina) :

m m(m — 1)
coso + Tcos(oz—¢)+ Tcos(a—2¢)+...
m me
= (2+2cos¢)? cos (oe -5 +mpn)

where p is an integer such that |¢ — 2p7w| < 7 (with the restriction m > 0 in
case of equality). The substitutions ¢ = 2x and @ = mx, mx + 5, m (x + %) or
m (x + %) — % give Abel various formulae, for instance

m m(m — 1)
(2cosx)" cos2mpmw = cos mx + 1 cos(m —2)x + 13 cos(m —4)x + ...
—1
(2cos x)" sin2mpmw = sinmx + ? sin(m — 2)x + % sin(m —4)x + ...

for2pm — % < x < 2pm + 5. Abel was the first to prove rigourously such formulae
for m non integer; in a letter to his friend Holmboe (16 January 1826, (Euvres, t. 11,
p- 256), he states his result and alludes to the unsuccessful attempts of Poisson,
Poinsot, Plana and Crelle.

Other examples of functional equations in Abel’s work may be mentioned, as
the famous Abel theorem (see §5), which may be interpreted in this way. In a letter
to Crelle (9 August 1826, (Euvres, t. 11, p. 267), Abel states his theorem for genus 2
in a very explicit manner: he considers the hyperelliptic integral (x) = [ %
where P is a polynomial of degree 6; then Abel’s theorem is the functional equation
@(x1) + @(x2) + @(x3) = C — (p(y1) + ¢(¥2)), where x1, x5 and x3 are independant
variables, C is a constant and y;, y; are the roots of the equation
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02—0

X1X2X3
— X1 — X2 — X3 y+#=0,
202—&5

2 c%+2c1—a4
Y T2 —as
Cy — ds

with P(x) = a + a;x + axx® + a3x> + asx* + asx® + x® and ¢ + cixj + cyc? +
x; = /P(x;) for j = 1,2,3. Abel says that this functional equation completely
characterises the function ¢.

Abel discovered how to express the elliptic functions as quotients of two entire
functions of the type of Weierstrass’ o-function; there is an allusion to that in the
introduction to his Précis d’une théorie des fonctions elliptiques, published in the
fourth volume of Crelle’s Journal (1829, (Euvres, t. 1, p. 527-528) and in a letter to
Legendre (25 November 1828, (Fuvres, t. I1, p. 274-275). The elliptic function A(6)
is defined by

A0

ezfd—x, where  A(x, ¢) = £v/(1 — x2)(1 — c2x2),
A(x, ¢)

0

and M0 = ‘;—g where the entire functions ¢ and f are solutions of the system of
functional equations (68’ + 60) - (8’ — 6) = (@8 - f0))*> — (' - f9)%, f(6' +0) -
fO' —6) = (f0- f0')> — c*(¢h - p9")*. This system is partially solved in a notebook
of 1828, with x and y in place of ¢ and 6; supposing ¢ odd and f even and
taking the second derivative with respect to x at x = 0, Abel finds the equations
F"y+ fy=(f'0)? = a(fy)* = c*blpy)* and —¢"y+y+(¢'y)* = b(fy)* —a(py)?
with a = f(0) - f7(0) and b = (¢/0)%. If it is supposed that a = 0 and b = 1,
this reduces to (f'y)* — f"y - fy = *(@y)% (@'y)* — ¢"y - oy = (fy)>. Again
differentiating four times at x = 0, Abel obtains the derivatives of f up to the 4"
order and ¢, but his computation, aimed to find differential equations for f and ¢,
stops here.

Two posthumous papers by Abel are devoted to differential equations of Riccati
type. In the first one, Sur [’équation différentielle dy + (p + qy + ry*)dx = 0, ot
D, q et r sont des fonctions de x seul ((Euvres, t. I, p. 19-25), Abel shows how to
transform this equation in another one of the form dy + (P + Qy*)dx = 0. Two

methods are proposed. The first one, by putting y = z + ' with " = —3L, which
gives dz + (P + Qz*)dx =0 with P = p — Z—i - Z—Z% + %;’7 and Q =r.

The second one, which is classical, by putting y = zr’ with ' = e~ Jadx. this
gives P = pe/ 4% and Q = re~ /49 Abel observes that when pe/ 99 = are= /44 or

dx . C . . 1{ d d 2 —
el 4dx — “—p’,the equation, which is written dy—i—(p—i—i (ﬁ—ﬁ;) y+4ry )dx—O,

may be integrated in finite terms, giving y = —\/g tan ( f ,/rpdx). For example,

1—cx?
I4+cx2

the equation dy + (x”’ + %(n — m)% + x" y2) dx = 0 has a solution of the form

m—n 1 . . . .
y = —x 7 tan (c + m_ﬁl”xi(’”"”)); in the case in which n = —m — 2, this

the equation dy + (l - %) dx = 0 has a solution of the form y =

X

and
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solution becomes y = —x"*! tan(log k'x). Another easy case of integration is given

Va 7cfpdx
. P_ 4 _ - _ /2 _ W‘i
by the relations £ = 5~ = r; in this case y = —a + +a I s fp o

Abel explains how to solve the equation when a partlcular solutlon y' is known.

Putting y = z+V/, he finds dz+((q+2ry")z+rz?)dx = Oand y = y’—i—%.
[e= @2 gy

For example the equation dy + (Xl2 + % + cyz) dx = 0 has the particular solution

y = <% + (12;6“)2 — %) 1 and this leads to the general solution

N e o TR e

y = - - + .
2c 2c clx cx ck F4/(1—a)2—4c
«/(1—a)2—4cx
Other cases of integration are found by Euler’s method of integrating factor: the

, . 2
expression zdy + z(p + qyz)dx is a complete differential when "—f{ = dalptgy?) ;V‘” )
-

or, if z = ¢", when £ = (p + qyz) + 2¢gy. Abel tries with r = alog(a + By)
with a constant and «, 8 functions of x only. He finds the conditions ae’ — af8p =

aB —2aqg = afq + 2,3q = 0, where o/, B’ are the derivatives of «, ,3 Thus the
equation dy + (—/ - —y ) dx = 0 admits the integrating factor z = o ﬁ ey and the

SOluthIl y = —% + W
-1 2 X)

In the second paper, Abel considers the differential equation
(v +8)dy + (p+qy +ry*)dx =0,

which is reduced to the form zdz + (P + Qz)dx = 0 by the substitution
y=a+ fzwitha = —sand B = ¢~ /", One has P = (p — gs + rs?)e?/
and O = (q —2rs — %)ef & If P = 0, this equation has the solution z =

[ (2rs + & — g)el " dx so that the equation

(v +5)dy + (gs — rs* + gy +ry)dx =0

has for solution y = —s + /7 [ (2rs + & — g)e/ "**dx. When Q = 0, the

equation in z has the solution 7 = \/ 2[(qs—p-— rs2)ezf rdx dx and the equation

d
(}’+S)d)’+(P+<2rs+£>y+ry2>dx=0

has for solution y = —s + e’f”’x\/Zf (rs? — p + &) 2/ rdxgy.
In order that z = ¢" be an integrating factor for the equation

ydy + (p + qy)dx =0,



The Work of Niels Henrik Abel 33

ar

we must impose yg—; — (p—i—qy)yy

%:Z_i_q:‘gzpﬂ'Fq=0,50/3=—C,Ol=—chdxand—cp+q=0,

For r = a + By + yy* one finds y = ¢, B = 2¢ [qdx, g + 2cp [qdx = 0
and o = 2c¢ [ gdx [ qdx — [ %. When g = 1, we find that the equation ydy +

—q = 0. Forr = o+ By, this gives the conditions

(C(Xlﬂ) + y) dx = 0 admits the integrating factor ﬁg*%@‘ﬂ“)z_ More generally,
for r = a + a1y + apy> + ... + a,y", one finds n 4+ 2 conditions i;"—x" =0=
d n— d n—

U=l _ngay, = FE2—(n—1)qay—1—npot, = ... = L —goy—2pa; = g+pa; =0

for the n 4 1 coefficients o; so there is a relation between p and g. For n = 3, Abel
finds

q+6cp/qu/qu+3cp/pdx=0.

. .. d
A function r = ﬁ leads to the conditions f + p}q = Z—z — Bq + 2uBg =

2
a?q — Bp = 0 and the equation ydy + (( + %) q [ gdx + qy) dx admits

c
(/ qdx)*
1
: : T wi -1 =—¢ 41
the integrating factor e« with g T and o (T ad) + 3.
Another form tried by Abel is r = alog(e + By); he finds that ydy —

a
(”—“q — qy) dx = 0 has the integrating factor (("flJ [ qdx + cy) . More gen-

a2

1

erally r = alog(y + o) + d’log(y + ') gives a new form of differential equation
integrable by the factor e”.

2 Integral Transforms and Definite Integrals

The second Norwegian paper of Abel, titled Oplgsning af et Par Opgaver ved Hjelp af
bestemte Integraler (1823, (Euvres, t. 1, p. 11-27), studies in its first part the integral

equation Ya = ds

Y where v is a given function, s an unknown function of x

andn < 1. :

In the case where n = %, s is interpreted as the length of a curve to be found,
along which the fall of a massive point from the height a takes a time equal to Ya.
Let the curve be KCA, the initial position of the falling body be the point C and
its initial velocity be 0; when the falling body is in M its velocity is proportional to
Ja — x, where a is the total height AB and x is the height A P. So the fall along an
infinitesimal arc MM’ takes a time dt proportional to — ZS_ =, where s = AM is the

curvilineal abscissa along the curve, and the total duration of the fall is proportional

ds
Ja—x"
Abel’s equation is probably the first case of an integral equation in the history of
mathematics; before that, Euler had introduced in his Institutiones Calculi Integralis
the general idea to solve a differential equation by a definite integral, for instance by

X=a
to the integral |
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K\ L
C\\ B
M P

A

the so called Laplace transform and Fourier (1811) and Cauchy (1817) had studied
the Fourier transform and its law of inversion.
Abel supposes that s has a development in power series with respect to x:

s = Za(’")xm' differentiating and integrating term by term, he obtains Ya =
1
XM= _ - =Yg I(—n)(m+1)
Zma(m)f( “ One has mf - x)n = ma™ n{ o Dol e,

using the Eulerlan function I, for which Abel refers to Legendre’s Exercices de
Calcul intégral; so

Im+1)

— _ (m)y m—n __ " NPT )
Ya = I(1 n)Zot a n—nt1)

Let now ya = Y fXa* (y is implicitly supposed to be analytic); by identification,

1
®) k
Abel gets o0 = __LkED ___ gy — _P i T rdt__ 5o that

I(1—n)(n+k+1) In-I'(1—n) o —nl-n>
1
7 (k) k
P Za(”‘)xm _ x" > B (xndt
I'm-I'(1—n) (1 =pl-n
0
1 ) 1
B X" Y(xnydt  x"sinnw Y(xt)dt
T mm-rd-n) A= x (1 —=nt=
0 0

Y(xt)dt
[

and, in the particular case where n = 5, s = %

MI>—

0\_

Abel applies this result in the case where Ya = ca" (c constant, and the expo-
nent n not to be confused with that of a—x in the general problem, which is now %), in

which s = Cx"*3, with C = £ f D4 then dy = /ds? — dx? = dx/kax? T — 1,
0

where k = (n + %)2 C?, s0

= /dx\/kxz"*l — 1=k +xvk—-1
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in the particular case where n = %; in this case, the curve KCA solution of the

problem is a straight line. The isochronic case, where Ya = ¢ constant is another
interesting case; here n = 0 and s = C/x (C = %), equation characterising the
cycloid. This problem was initially solved by Huygens (1673).

Turning back to the general case Abel gives another interpretation of the solution
as a derivative of ¥ of non-integral order —n. Indeed, if yx = Y o™ x™ and if k is
a natural integer,

d*y Im+1)
R S (m) m—k.
Aok 2.« Tm—k+1)

in which the right hand side is still meaningfull when & is not a natural integer, and
then

1
Im+ 1) 1 M dt

Tm—k+1) Ik ) 1=+
0

1
O (xnMdr 1 W(xn)dt

1
. . 1 Za
so that the right hand side becomes — Fya) of I N (T , whence
— n 1 —
the definition of 2-¥ = ¥ { (‘l/:(f)’)l‘f’n and the solution s = 75 @7V of the initial

problem. The derivative of order n of s = @x is naturally ﬁlﬁx, which means
that

d¢ 1 r ¢ xdx
da® — I(1 —n) (a— x)"
0

(n <1);

1

forn = %, Yx = ﬁd—zf

The idea of a deriill;liive of non-integral order comes from Leibniz; it was based
on the analogy, discovered by Leibniz, between the powers and the differentials in the
celebrated formula for d” (xy), which has the same coefficient as (x+y)" = p"(x+y)
in Leibniz’ notation. The general binomial formula, with exponent e non necessarily
integral, suggests to Leibniz a formula for d(xy) as an infinite series (letter to
the Marquis de 1I’Hospital, 30 September 1695). Abel’s procedure is an extension

1
[ dx(—Ix)°

of a formula given by Euler in 1730: dnifle) = z¢"“——— where e and n are
[ dx(=lx)en

arbitrary numbers and / notes the logarithm. At Abel’g time, some other authors also
considered derivatives of arbitrary order, as Fourier and Cauchy, but the theory really
began with Liouville in 1832 and Riemann in 1847.

At the end of this part, Abel reports that he has solved the more general integral
equation Ya = [ ¢(xa) fx-dx, where ¢ and f are given functions and ¢ is unknown.
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Abel published a German version of this study in Crelle’s Journal (vol. I, 1826,
(Euvres, t. I, p. 97-101). He finds the solution without any use of power series,

1
a—1
starting from the Eulerian integral of the first kind | y_dy _ Twlt-n)
0

T = Taiion® which gives

a
2 ldz _ rel(l-n) a—n
) @ = Tt me " and

/x da /a 29714z _ Fa-F(l—n)/x a“"da
x—a)t") (a—2" INoe+1-n)) x—al"
0 0 0

T

L A
o

Then, if fx = [ ga - x*de, one has [ —4% f2d2 _ [y (1 — n) fx and
0

(x—a)l—" o (a—z)"

o= sinnn/x da /a f'zdz
T on J (x—a)I*”O (a—z2)"

Therefore, in the original problem ga = f_

x=l

sinnw /‘ vada sinnmw / da / ds
= =s.
T (x —a)l-n T x—a)t-"J) (a—x)"
0 0 0

In this paper, there is no mention of derivatives of non-integral order.
The second part of the Norwegian paper is devoted to the proof of the integral
formula:

@ f; 7> one has

) +oo +oo
ox+y/—D+ox—y/—1) = ;y / e vdy / o(x + t)e_"z’zdt,
—00 —00
.. . | T el
giving as a particular case cosy = 7= [ e "*72dt when gt = €', x = 0. Abel
—00
uses the developments
(p//x 5 (p////x 4
-1 —y/=1H =2 - — ' =,
Pty =D+ex—yy/=1 <</>x ) T
1? I
t — t / - /! s .
px+1) =px +tox+ 2% x+1.2.3(p X+

and the definite integrals
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+00 bl +o00
022 o g, F( 2 ) —v2y2 . —2on _ 1 —2n 2n—1
/ e t'dt = T e v tdv=1T 7 y .
—00 —o0

The last two parts of the paper give summation formulae by means of definite
L =e¢'+e 2 +e¥+... and the value

o0 oo
J e > Ndr = T80 Abel deduces [ " = I2n)¢(2n); the Eulerian formula
0 0

2n—1_2n . . .
t2n) = 21“(2;1—an"’ where A, is the n-th Bernoulli number, then gives A, =

oo
2n—1
zzﬁ’fnn f ler,ld L= 22,, T f te’” 1 - Using these values in the Euler-MacLaurin sum

formula ) gx = f(px.d — Egox + A % — Az% + ... and Taylor series for
@ (x &+ 5+/—1), Abel finds

o0

Zgox:/goxdx——gox+/(p i \/_)\/__1( —3v=1) emdt_l. (24)

0

This formula was already published in 1820 by Plana in the Memoirs of the Turin
Academy; Plana found it by the same type of formal manipulations as Abel. It was
rigorously established by Schaar in 1848, using Cauchy’s calculus of residues.

As particular applications of this formula, Abel gives the values of some definite

0o .
integrals: for px = ¢, [ Samdt — 1y + 1 for px = 1,
r d 1 1 r
tat
/ ; =210gx———22—+3+/
(x2 4 322) (e = 1) X X J 1+ 3 t2 (e —1)
0
and for ¢x = sinax, f - 1at dt = i — cota.
The second Abel’ s summation formula is
ox+ 1) —px+2)+ox+3) —epx+4)+... (25)
o0
1 / dt o(x +t/—1) — p(x —t/—1)
=—px+2 .
2 em _ e—m 2 /_1
0
In order to obtain this, Abel puts a priori the first member equal to %(px + Aj¢'x +
Ar¢"x + ... with unknown coefficients Ay, A,, ...; when px = V=1 one sees
that A, = A, = ... = 0and } tan 3¢ = Ajc — Asc® + Asc® — ... . On the other

o0
hand, %tan %c = f ‘)m’e,;, dt after Legendre (Exercices de Calcul Intégral, t. 11,
0

p- 186), so the series for e’ — ¢~ gives the Ay, in the form of integrals and the
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reasoning ends as for the first formula. As an application, Abel takes px = ﬁ and

oo
di
getS { m 10g2

In the second volume of Magasinet for Naturvidenskaberne (1825), Abel pub-
lished another derivation of the formula (24) and he extended it to the case of iterated
sums (Euvres, t. 1, p. 34-39):

n
n n—1
thx =ApioInfox-dx" — Ay, (n—1) [ ¢x- dx"!

1
+...+(—1)”’1fgox~dx+(—1)”§g0x

2ty /OO Pdi @(x + 1/=T) — p(x — t/=T)

e2m -1 2 /_1
0
oo
nel Qdt  o(x +t/—1) +px —t/—1)
+2(=1)
e — 1 2
0
where the coefficients Ao ,, A1y .. , Ay_1,, are deﬁned by the development of p" =
gy in the form (=1)""" (AOnP+A1n +A2n Pt A 1nilnll>and
P=Ap,— Azﬁnt +A4,,,t4 — ., O =A - A3,,1t3 +A5,nt5 —...; by derivating

p", Abel establishes recursive relations between the Ay,: Ao,+1 — Aon = O,
Al,n—H Aln = AO n’AZ n+l — A2,n = %Al,nv'-'7An—l,n+1_An—l,n = %An—Z,nv
Ayl = ;An—l,n' The proof of this formula is based on the expression of ¢ as
a Laplace transform: px = [ e" fv - dv, which naturally restricts the generality; it
gives

o S
Z(px_/e (ev—l)”dv'

As an example, for px = e and n = 2, this formula gives:

o0 o0
1 1 1 1 dt - sinat tdt - cos at
—_— =42 —— -2 ——.
(e* — 1)2 2 a a2 e2mt 1 et _ 1
0 0
Another example, with px = ﬁ and n = 1, leads to
o0
n 1 N 1 n 1 + 1 4 4a / tdt )
a2 @+ (@+2? T2 (e¥ — 1)(a? + 12)?’

. . _ 1 2 _3 T tdt
in particular, fora = 1, % = 5 + 4({ A2
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A posthumous paper of Abel is devoted to the study of the Laplace transform; its
title is Sur les fonctions génératrices et leurs déterminantes ((Euvres, t. 11, p. 67-81,
mem. XI) and the study is purely formal. Abel writes an arbitrary function ¢ of
several variables in the form:

ox, v, z,...) = [TV £y v p, o Ddudvdp . ..

and he calls ¢ the generating function of f and f the determinant function of ¢,
in abbreviation ¢ = fgf and f = D ¢. The following properties of the transform
are established in the case of one variable only: linearity, effect of a translation
Do(x + a) = ¢”Dgx and fg(e®'Dgx) = ¢(x + a), effect of derivations or inte-

grations D (?ﬁ‘) = V" - Dgx, fg(v"Dyx) = L2, D ([" pxdx") = v™"Dgx and

fg(v™""Dgx) = f " pxdx", effect of finite differences or iterated sums

DALgx = (e — 1)" fu, fg((e" — 1)" fv) = Algx, DX (¢x) = (" — )" fv
and fg((e™ — 1)7" fv) = X (¢x).

Abel also states the effect of the composition of a translation, a derivation and
a certain number of finite differences. More generally, if the operator ¢ is defined by

d"o(x +«a d”o(x + o
S(px) = Ay TICED g, AOED (26)
dx" dx"
where A, o, Ay o, - . . are constant coefficients, one has D(§¢x) = v - Dpx where

’ /
Yv=A 0" + Ay " e + ..,

and Abel considers the composition of an arbitrary number of operators of the type
of 8.

Abel clearly understood how the Laplace transform gives a symbolic calculus
on the operators (26); he uses this calculus to obtain developments in series. For
instance, he explains that the Taylor series for ¢(x + «) amounts to the development
" = l4+va+ %az + % o’+. .. inthe determinant function. A polynomial relation
between the multiplicators ¥, v, ... , ¥, associated to operators §, 81, ... , §,, gives
an analogous relation between the operators themselves. Let us consider the operator
dpx = @(x + o) + apx; one has Dépx = (e + a) fv where f is the determinant
function of ¢. Since

n(n — l)an—262va
2

— +nae(n—l)va + I’l(l’l B 1)a2e(n—2)uoc +...

(a+ e )" =a" +nd" '™ + + ...

—1
§"ox = a"ox + na" 'o(x + o) + %a”_zw(x +2a) + ...
nn—-1) ,
= <p(x+na)+na<p(x+(n—1)a)+Ta p(x+n—-2))+... ;
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Abel writes down both forms, which are the same for n a natural integer, but which
may be extended (under different conditions for the convergence of the series) to
other values of 7; he says nothing about that, but he may have envisaged this type of
extension as we saw that he was interested by derivatives of non-integral order and we
know that Cauchy defined pseudo-differential operators with constant coefficients us-
ing the Fourier transform (1827). Fora = —1, ALox = ¢(x+na) —np(x+n—1a)
+@¢(x+(n—2)a)—...

Now let §1px = @(x + a1) + arex, so that D& ¢x = y" fu with y = " +ay;
ifz=¢e¢"“4+atheny = a; + (z — a)ciTl and it is possible to get a development
y' =Y A,z". Therefore §Tox = ) A,,8"¢x. In the case where o = «,

nn—1)

7 (a1 —a)" 28%px + ...

8lox = (a1 —a)"ox +n(a; — a)"'spx +

nn-—1)

3 (a1 — a)*8" px + . ..

= 8"px +n(a; —a)8" 'ox +

Fora; =0, p(x +na) = §8"ox —nad"'ox + wgzy"z(/)x + ... and if moreover

a=—1,¢(x+na) = Alpx + nA 'ox + "D AP 20x + ..., a formula given
by Euler (1755).

When §gpx = p(x+0o)—apx and §1¢px = cgox—!—k%,D&px = (e"—a) fv=zfv

and Défox = (c +kv)"fu = y"fv;as y = ¢ + Slog(z 4+a) =c+ gloga +

g (; — %2—2 + %Z—; - .. .), one may write a development y* = ) A, z", which
gives 87gx = )" A,,8"px. For example, if c = 0,a =k =l and n = 1, % =

1 (Apx — 3 A%px 4+ ; A3px — ...), a formula given by Lagrange (1772). Starting
from a formula of Legendre:

v)3

v\2
WD L baap — 3102

b* =14+1b-vc' +Ib(lb -2l
+ b - ve” 4+ 1b( c) 2 3

L]

in which he makes b = ¢® and ¢ = ¢f, Abel obtains in the same way

do(x + B) n ala —2p) ) d*p(x +2p)
dx 2 dx?
ala —3p8)* dPo(x+3p)
2.3 . s +...

px+a) =px +a 27)

and, in particular, px = (0) + x¢/(B) + 29520 ¢"(2p) 4+ L2 (3p) 4
Abel published the special case of (27) in which px = x™, m a natural integer, in
the first issue of Crelle’s Journal (Euvres, t. 1, p. 102-103); there, he proves the
formula by induction on m and he observes that, when § = 0, the result reduces to
the binomial formula. Another special case given in the posthumous memoir is that
in which gx = log x; then

a+1 « 2-a 1 o« 38—« 2+
x+B 2 x+28 x+28 3 x+38 \ x+38

log(x+a) = logx+
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2
andin particularlog(1 +o) = 7% +1. ( l+3ﬂ) 14(:3,3'(1 _ 1?30:3) o
-1

I+ 72 s,
When o = 3, this reduces to log(l + 28

wl—-

_ﬂ 2 _p 1 22384
T Ti Gt T

3 (143p)?°

for example, log3 = 1 + Z nn+1 (Zﬁ)

Abel also considers the developments of Aaq)x, To and . ffx 29 in power series
with respect to n; they are respectively obtained from the developments of

(" — 1" = exp(nlog(e" — 1)), v"=¢"", and (1+v)" =¢""eH),

The coefficients respectively contain the powers of log(e”® — 1), log v and log(1+v),
so we must identify the operators § respectively defined by

Spx = fg(log(e™ — 1) fv), logv- fv and (1 + v)fv;

these operators are respectively dox = a¢'x+ [da )", ¢'x, 81¢x — 8%(,0)5 +3 Ls3 1ox —
., where §;¢px = ¢'x — @x, and ¢'x — lgo”x + 1<p’”x
In the continuation of the paper, Abel expresses this last operator in the integral

form

0

o
8¢x=fgt L0 — 1) — ),

o0

which is obtained in the following manner: the equality

a/

/e(lfotv)tdt — (eagfaav _ ea/efa/otv)

a

1
1 —av

—aov —aov 2.2 —aov 4. )

+ o ve

/
aav+a2UZe aozv_i_.“)

=¢(e + ave

ro
—e (e7% 4+ ave

leads to

a/

/e’(p(x —at)dt =
e (p(x — aa) + a@' (x — aa) + ¢ (x — aa) + ¢ (x —aa) +...)
—e” (p(x — ad') + ag/ (x — ad) + 2¢" (x —ad) + 2" (x —ad) +...),

0
from which Abel deduces ¢'x —ag’x+ 02" x —a?¢""'x+...= [ €'¢/(x + andt
—00

and, integrating with respect to o, ag'x — 1o2¢"x + 10’9 x — 1ot x + .

0
[ (p(x + af) — gx).

—00
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Other classical relations between functions give Abel relations between opera-

tors. So the Fourier series % = cos v — cos 2av + cos 3av — ... leads to

px = p(x + @) + o(x — ) — p(x + 20) — (x — 2a) + p(x + 3a) + ¢(x — 3@)
—p(x +4a) — p(x —4a) + ...

and the formula (e — 1)~ — (va)~! —|— -2 f dr sm(v"”) leads to

Zm‘

o0
Z . _/ dx + 1 . 2/ dt . o(x + at/—1) — p(x —at/—1)
®. ®. 2§0 = 2 ] PV )

0

00
dt-cos(avt)

which is formula (24). From the formula e

= Ze * given by Legendre

0
(Exercices de Calcul intégral, t. 11, p. 176), Abel deduces

o d _
/l+tt2'<ﬂ(x+af«/_);r‘/’(x aty/=1) f(,)( + a), (28)

0

for instance f e (d’ z for px = 1 + (where it is easy to verify that

24ty T 2 X(Xﬂ:a)

+ must be taken as +); when px = l ‘”("Jr“’*/__l);"/’(“““"/__‘ ) —

z " cosng, where

cos(n arctan % 1
7= +/x? 4 o1 and ¢ = arctan %, so that f e m =7 Grap O
%

T ot / (cos ¢)" cos ngde 29)

2 a(x+a)” ) (xsing)?+ (xcosp)?’
which reduces to

T n
e / (cos ¢)" cos npdep (30)
0

when o = x.

o0
. dtsinat _ w1 _ ,—a tdt-sinat _ 1w _,—a :
From the integrals J e = >(1 —e™) and f e = 2¢ also given

o0
by Legendre, Abel deduces 7 (px — ¢(x + a)) = { t(littz) (”m*/_zi/%(x M‘/_)

E(p(x:l:ot) — Ooﬂ.<,0(X+ott«/71)f<p(x7at\/fl) _ T@fp()ﬂrat«/ 1)— (p(x —at/— )
2 - t
0

b
J e W and2<px_ —

%
for px = xln this gives [ %(cos ¢)"sinng = 5 by putting ¢ = x tan ¢.
0
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In an addition to this paper (Sur quelques intégrales définies, (Euvres, t. 11,
p- 82-86, mem. XII), Abel develops (cos ¢)" cos n¢ and # in power series with
respect to n and, comparing the coefficients of the powers of n in (29), he gets the

values of some definite integrals:

z T

/2 do T 1 ) X /2 log cos ¢d¢
- —_— = — — 10 =

T
z : . g .
2 xa x2sin2p+a2cost¢p’ 2 xa - x+a x2sin?2 ¢ + a2 cos? ¢’

—_—

1( x )2 7((1ogcos¢)2—q>2)d¢
— | log =

X+« x2sin2 ¢ +a?cos?¢

(SYRE]

Putting px = (log x)" and “;’ = tan ¢ in (28), he gets

[SE}

/ i (log 225 + 6v/=T) + (log 225 — ov/=1)
x2sin? ¢ + % cos? ¢ 2
b

= ——(log(x + a))"
2xo

3 n n
and [ d¢ (<log wss T ¢\/—1) + <log g — q)«/—l) ) = m(log2)" when x =
0
a=1
More generally, putting r = tan u in (28) we get

du(p(x + a~/—1tan u) + o(x — a~/—1 tan u))

o\mltl

= mp(x + o) and fdu((p(l +/—Ttanu) + (1 — /—1tanu)) = np(2) when
0

— ey — 1 _ X" e ol
x =a = 1;for px = =, this gives

3
(cosu)"™(cosmu(cosu)” + acos(n —m)u)
(cosu)?" 4 2 cos nu(cos u)" + o2

zm
1+ o2

du=z~
2

In (30) Abel replaces n by a fraction = and he puts % = 6, so that

g g
€os 5,

2
T 1 m dy
5 Tw = (cosne)ﬁcosmedez—/ vV () ;
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where yy = y" — 2D yn=2(] — y2) 4 20=DOERED ynmd) w22 - and
fy = ym—m=Dym= 2(1 y2) + =2 en3) g4 (] — 22 —...,forlnstance
cosf Sm7

T

f = [ VTR R e [ TR R

All this early work of Abel gives ev1dence of his carefull study of Legendre’s
Exercices de Calcul intégral, which also were his source of inspiration for the theory
of elliptic integrals.

A paper on a related subject was published by Abel in the second volume
of Crelle’s Journal (1827, (Euvres, t. 1, p. 251-262) under the title Sur quelques
intégrales définies. It contains some applications of the relation discovered by Abel

yzddval 17 d” =/ ”d“, where y; and y, are two solutions of the linear dif-

. . . +1
ferential equatlon 5+ p Y+ gy = 0. For instance y; f (sz’l)y x)ldxﬁ and
f ta)* Y ax

Ao are solutions of the hypergeometric equation

dz_y_(a+)/ ﬂ+y> (y+D+B+y) —0
da ’

da? a 1+a a(a+1)

and this leads to the relation

1
dx(x + a)rt! / dx(x + a)*tAtr-1

(a+ B+ )/ (] —x)iF (1 — )
0

= Ca"™" (1 + )P,

1
dx(x + a)¥ dx(x 4+ a)* Aty
—r ”f xla(l —x)l-p / xP (1 — x)
0

where the constant C is determined by making a = oo:

1

1
C=—(a+pB— 1)/dx.x°‘*1(1 —x)p! ~/dx-x”3(1 —x)7¢
0
= m(cotam + cot Bm).

[’} o 00 P

d d
In the same way y; = [ (1+::)ﬂ()€ia)y and y, = f o= ;‘(Ha;‘ﬁﬂw - are so-
0

2
lutions of the hypergeometric equation 43 + (‘H—y — ﬁ +V) g wlepoy

da? a 1 a(l1—a)
x"%dx _ I'd—o){atp+y—1 P lax
and we get the relation f T +x)5 e = BTy { T e
T —Pd 8 1 F B4
. _ xPdx _ _ N-B-r+ xPdx . :
The function y; = ] we = =({—-a) | w o is a third
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solution of the same hypergeometric equation, which, combined with y; =

—a—y+1 Ydx
a /(1+A)V(l+ax)/3 glVCS

/ X %dx xPdx
A+xr(I+av)f | + X))t A+ (1 —a)x)e

) Bdx x %dx
—a /(1+x)7/(1 A—an® ] T+07+ (1 +ax)P
0

_F(l—a)F(l—ﬂ)

IMa+pB+y—1.

I'y+1)
[o.¢]
x"%dx X Ldx
When 8 = 1—a, this relation becomes a f EE e .{ (e R
1 X~ %dx o0 xe—lgy o 1 f o
( a) f (l+x)y+](l+ax)l—ﬂl 'O T (r(—a0® — 7 Smom,lnpartlcu ar,foree = y = 7

a/ x . dx
) V(I +x0)(1 + ax) ) Vx(l+x)31 + (1 —a)x)

o0
dx dx

1— . = 2.
( a)ofJx(1+x)(1+(1—a)x) J Vx(1 4+ x)3(1 + ax) "

As Abel observes, these integrals are elliptic and the change of variable x = tan® ¢
transforms the preceding relation in

% l
/ do / dyp - cos? ¢
a
V1= —a)sin2¢ 1 —asin?g
0 0

T

dy - cos® ¢

2
dy b4
+(1—a>/ / -
/ V1 —asin?¢ ) V1= —a)sin2g 2

which is equivalent to Legendre’s famous relation between the complete integrals of
the first two kinds (Exercices de Calcul intégral, t. 1, p. 61). Legendre had proved
this relation by a very similar method.

Starting from the integral y = dex 1191 , Abel finds that 7> dy >+ ( =t g) y
0

(x+a)*th

0(17,‘5 ad~ﬁ_11 el
= _ai(lia;xfz)a‘*ﬂ’ sothat y-af(1 +a)% = C — x*(1 — x)? f % where

C is independent of @ and is found to be F( - 5) by making a = oo. Thus
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re-8 a/xdx-xala—x)ﬂl
et p U+ Gt )P

a

da-a?~'(1 + a)*!

a1 — )P .
+x%(1 —x) / @+ x)otP ;
0

when o + 8 = 1, this gives
X a
(1+a)* / dx - x* (1 —x)"@ x“ / da-a (1 +a)*! 7
x+a (1 — x)o-! a+x " sinwo
0 0

aafl

1
The integral y = f e~ x* (1 — x)~ldx («, B > 0) is a solution of the conflu-
0

ent hypergeometric equation ‘C’Z—g + (% + l) % + %y =0,and sois
00
yi = /ef”xx‘kl(l — ) ax
! o0 o
=e? / e xXP N1 + 0% ldx = e 4P f e xP N a +x)* dx
0 0

(a > 0). Abel derives from that the formula

o0

1
Tw-I'B = /e_‘”‘x“_l(l —x)ﬁ_ldx-/e_xxﬂ_l(a+x)“dx
0

0
1 oo

—a/efaxx“(l —x)ﬂfldx~/.efxx‘371(a+x)°‘71dx,
0 0

and, forf=1—a,

ld o [ee)
’7'[ Z/_xe—ax( X > ‘/e—xdx(1+£l)
sin o X 1—x X
1 0 [e'e)
_ x \“ dx a\e
—a/dx-e“x< ) / ex<1+—>.
1 —x X+a X
0 0

o
As a last example, Abel considers the integrals y = [ e xa= 1y and y =
0

o0
=2 a1 . . . . d%y 1 dy 1
of e~ x*dx (« > 0), solutions of the differential equation 7 L il 10

0, which is related to the so called Weber equation. The corresponding relation is



The Work of Niels Henrik Abel 47

o0 o0
%F(a;— 1) aT = /e xzx“_ldx~/e_“x_x2x°‘dx
0 0

00 00
_,2 —ax—x2  —
_{_v/eaxxxadx./eax R 1dx.
0 0

In a posthumous paper Les fonctions transcendantes ) iz > a% > a% AU ain

exprimées par des intégrales définies (Euvres, t. II, p. 1-6), Abel gives integral
formulae for these finite sums, extended from 1 to a — 1. He also studies their

ﬂz _(_1)1123”2#’

continuation to non integral values of a and n. As
one has

n—1
Lo
ar 2-3...(n— Dda"!

1
where L(a) =) 1= [ x(:_ll’ldx. From this Abel deduces
0

! a1
L(a,a) = Z——FL/ ( ) dx 31)
0

P a— a—1)2 2 a—1)% 3
for any value of . Substituting x*~! = 1—(a—1) (11)+“50= (11)"— = (11)"+
.and t— =14 x+x> 4+ ..., he obtains

a—1 1 1 1
La, o) = 1 o 1+2a+1+3a+1+4a+1+"‘

(a—l)2 1 1 1
(¥(Ot+1)< + + —|—>

1-2 2a+2 3a+2 40l+2

(a—1)° 1 1 1
1'2.301(01+1)(0t+2) 1+20(+3 +3a+3 +40(+3 +...
1
—ala— DL (a+1) — %(a — 1L (a+2)
1 2
a(a+—)(a+)(a_ DL (o +3) —
2-3
where L'(¢) = L(oco,a) = 1+ 2% + 3% + 4% + ... is the zeta function.
1 (j1\* 1
Putting 2 instead of a in (31), Abel deduces L (%, a) = L ( ) dy +

X 1
(Ot)0 y—

a—1
1 ym— 1(11) e N
dy or, Wr1t1ng =

+ 7 f:_/y + ... in the hypothesis

I (Ot)

m—1<a
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m o / lr/’ / "yl "
L(—,a):a (AL'(at,¢) + A'L' (. )+ AL (. ') + ...
a

where L'(a,¢) =1+ 55 + 55 + +
1
The following paper Sur intégrale définie [ x“~'(1 — x)=! (11)*~ "dx (Euvres,
0

t. I, p. 7-13) is related to the same subject; it gives developments in series for

La and associated functions. When « = 1, the integral is equal to FI;“'F = As
a+c)

the logarithmic derivative of Ia is equal to La — C, where C is the Euler con-

1
stant, Abel deduces from this [x¢~!(1 — x)*"lixdx = (La — L(a + ¢))£4L%

0 Ia+c)’
1
fx“’l(l — )1 — x)dx = (Lc—L(a + ¢)) 1{;‘;3) For ¢ = 1, this gives
0
1 1
[ x¢xdx = —aiz, [x7A = x)dx = —@. Developing (1 — x)°~! in se-
0 0
ries, Abel obtains

L L+ )) -Ic 1 ( D 1 N (c—D(c—=2) 1
a—La+c¢)——=——(c—
F( +0) (a+1)? 2 (a+2)?
(c—=1D(c—=2)(c—=3) 1
— 32
2.3 (a+3)?2 * G2

ala+1) +a(a+1)(a+2)+

N a2 + (a+1)2 T 2wr? T 23w
Wthh becomes 27 log2 = 2% + 32 + 3 52 + 22 3 72 + 2;335 4792 +... whena = % for

5 = —2log2. Whena=1—xandc=2x — 1, L(1 — x) — Lx = mw cotmx and

For example, ifc=1—a, —La - gmm

Il —x)I2x —1) 1 2x — 2 2x —2)(2x —3)
—JT cot Tx = —
I'x (1-x2 (2-x)? 2(3 — x)?
2x —2)2x —3)(2x — 4)
234 —x)?
From (32) Abel deduces an expression of % as a quotient of two series and,
makingc =1, L(1 +a) =a — “(“ LU “(“_21_)3(2“_2) — ... .Thus

mcotma = L(1 —a) —
:_(Za_l+a(a+l)—(a—1)(a—2)

22
aa+ D(a+2)—(a—1)(a—2)(a—3)

The integral of the title, with « an integer, is obtained by successive differentiations
with respect to a:

1
-1 1 -1 =De=2) 1
Ofx” (I =x) ( ) ldx = FO‘( -5 (a-H)O‘ + 1 @ )
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Taking the successive logarithmic derivatives, Abel sees that this integral has an

expression in terms of the sums La, L'a =) alz, L'a=Y" a%, ...; for example
1 N3
a—1 c—1 _ " "
/x (1 —x) (l—) dx-(Z(L (a+c)—L"a)
X

0
4+3(L'(a+¢)—L'a)(L(a+c¢) — La)
(Lt o) — Loy ) 2 TE

Na+c)

1
The successive differentiations of the equality [ (l % )W1 dx = I' with respect to
0

1 o0 1 "
o give the formula [ (l%)ail (ll%)n dx = dnal;", whence [ (Iz)"e % dz = o"*! dda?‘
0 0

o0
by a change of variable. Abel deduces from this the formulae [ e™“dx = 11" (1)
0

(n =0 and [1(Y)edr = 5T (1) (L (L)~ C) (@ = 15 C is the Euler
0

1
X o

constant), which leads to

o
It

fe_"xx“_llxdx = —a(Loz — C — logn).
nl)[

0

A third posthumous paper is titled Sommation de la série y = ¢(0) + ¢(1)x +
0(2)x% + p(3)x> + ... + o(n)x", n étant un entier positif fini ou infini, et p(n) une

fonction algébrique rationnelle de n (Euvres, t. 11, p. 14-18). Abel decomposes

@ in terms of one of the forms An®, (afn)ﬁ‘ He has first to sum f(o, x) = x +

20x2 4393 .4 n%x"; this is done using the identities f(e, x) = /@10 4nq
g dx
f0,x) = X—(}:);n) . Then Abel considers

1 X x2 X" [dx- X VF(a — 1)

Fo=— + + +..+ =
a*  (a+1D)*  (a+2)~ (a +n)“ X%

for which F(0) = % The formula (10) for the dilogarithm is thus obtained
whenao =2, n =oocanda = 1.

3 Algebraic Equations
We know thatin 1821 Abel thought he had found a method to solve the general quintic

equation by radicals; when he discovered his error and proved that such a solution
was impossible, he wrote a booklet in french with a demonstration, Mémoire sur les
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équations algébriques, o l’on démontre I’impossibilité de la résolution de I’ équation
générale du cinquieme degré (Christiania, 1824; (Euvres, t. 1, p. 28-33).

The impossibility of an algebraic solution for the general quintic equation had
already been published by P. Ruffini (1799, 1802, 1813), but his demonstration was
incomplete for he supposed without proof that the radicals in a hypothetical solution
were necessarily rational functions of the roots. Abel, who did not know of Ruffini’s
work, began with a proof of this fact.

Supposing the root of

Y —ay*+ by —cy’ +dy—e=0 (33)
of the form

1 2 m—1
y=p+piR"+prRm + ...+ pu R ", (34)

with m a prime number and p, pi,..., pm—1, R of an analogous form (R% is

a chosen exterior radical in a hypothetical solution by radicals and it is supposed

that it is not a rational function of a, b, ... , p, py, ...), Abel first replaces R by %
1

in order to have an expression of the same form with p; = 1. Putting (34) in the
equation, he gets a relation P = g + qu% + qu% +...+ qm,lRmT_1 = 0, with

coefficients ¢, g1, ... polynomial in a, b, ¢, d, e, p, pa, ..., R. These coefficients
are necessarily O for otherwise the two equations 7" — R =0and g + g1z + ... +
gm-12""" = 0 would have some common roots, given by the annulation of the

greatest common divisor

r—l—rlz—l—...—i—rkzk

of their first members. Since the roots of z”* — R = 0 are of the form «,,z, where
z is one of them and «,, is an m-th root of 1, we get a system of k equations
r+a,riz+... —i—aﬁrkzk =000 < pu <k—1and oy = 1), from which it is possible
to express z as a rational function of r, r, ... (and the o). Now the ry are rational
withrespecttoa, b, ... , R, p, pa, ... and we get a contradiction for, by hypothesis,
Z is not rational with respect to these quantities.

The relation P = 0 being identical, the expression (34) is still a root of (33)
when R is replaced by aRw , o an arbitrary m-root of 1, and it is easy to see that
the m expressions so obtained are distinct; it results that m < 5. Then (34) gives us

m roots i (1 < k < m) of (33), with Rm, aR#m, ... & 'R in place of R, and
we have
1
p=—O1+y+...4+ym),
m
1 1
Rt = —(y1 +a" s ),

2 1
PR = — (1 + "2y 4 APy,

L]

m=1 1 m—1
Pm—1R™m :;(y1+ay2+.,_+a Ym)s
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this proves that p, p2, ..., pm—1 and R% are rational functions of the roots of (33)
(and o). Now if, for instance R = S + v% + ng% + ...+ Sn_lvanl, the same
reasoning shows that v%, S, S,, ... are rational functions of the roots of (33) and

continuing in this manner, we see that every irrational quantity in (34) is a rational
function of the roots of (33) (and some roots of 1).

Abel next shows that the innermost radicals in (34) must be of index 2. Indeed
if le = r is such a radical, r is a rational function of the 5 roots yi, y;, ... , y5 and
R is a symmetric rational function of the same roots, which may be considered as
independent variables for (33) is the general quintic equation. So we may arbitrarily
permute the y; in the relation R% = r and we see that r takes m different values;
a result of Cauchy (1815) now says that m = 5 or 2 and the value 5 is easily
excluded. We thus know that r takes 2 values and, following Cauchy, it has the form
v =) =) ... (2 —y3) ... (34 — ¥5) = vS%, where v is symmetric and S
is the discriminant of (33).

N

The next radicals are of the form r = ( p+piS %> , with p, p; symmetric. If

1 1
r = (p - plS%) " is the conjugate of r, then rr| = (p2 - p%ﬁ) " = v must be
symmetric (otherwise m would be equal to 2 and r would take on 4 values, which is
not possible). Thus

L
m

1
r+r1:(p+p15%>m+v<p+p15%) =z

takes m values which implies that m = S and z = ¢ + q1y + 2> + q3y® + qay*,
with ¢, g1, ... symmetric. Combining this relation with (33), we get y rationally in
z,a, b, c,d and e, and so of the form

y=P+ RS + PZR% + P3R% + P4R%, (35)

with P, R, P>, P; and P, of the form p+plS% , P, p1and Srationalina, b, ¢, d and 1e.
From (35) Abel draws RY = L(yy + o'y +ays + @2y +ays) = (p+ pi5%),
where « is an imaginary fifth root of 1; this is impossible for the first expression
takes 120 values and the second only 10.

Euler (1764) had conjectured a form analogous to (35) for the solutions of the
quintic equation, with R given by an equation of degree 4. In a letter to Holmboe
(24 October 1826, (Euvres, t. 11, p. 260), Abel states that if a quintic equation is
algebraically solvable, its solution has the form x = A+ ~/R+~/R' + /R’ +~/R"
where R, R', R”, R” are roots of an equation of degree 4 solvable by quadratic
radicals; this is explained in a letter to Crelle (14 March 1826, (Euvres, t. 11, p. 266)

for the case of a solvable quintic equation with rational coefficients, the solution
2 4 3 1 2 4 4 1 2 3 1 4 3

: L1555 5.5 5 3 5.5 %45 5255
being x = c+Aasaja; a3 +Aaj a; a3 as + Aza; a3 asaj + Azas asaj a; , where
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a=mtn/T+@+\h(+ e+ V11,
ap=m-—n 1+e2+\/h(1+e2—\/1+—e2),
w=m+n/TH e —\h(1+e+TT e,
a3=m—nm—\/h(1+e2—m),

A=K+Ka+K'a+K"aa,, Ay = K+K'a;+K"a3+K" aya3, A, = K+K'a+
K'a+ K"aay and A3 = K+ K'azs + K"ay + K" ayaz,and ¢, h,e,m,n, K, K', K"
and K" are rational numbers.

Abel published a new version of his theorem in the first volume of Crelle’s
Journal (1826, (Euvres, t. I, p. 66—87). In the first paragraph of this paper, Abel
defines the algebraic functions of a set of variables x’, x”, x”, ... They are built
from these variables and some constant quantities by the operations of addition,
multiplication, division and extraction of roots of prime index. Such a function
is integral when only addition and multiplication are used, and is then a sum of
monomials Ax""'x""? ... It is rational when division is also used, but not the
extraction of roots, and is then a quotient of two integral functions. The general
algebraic functions are classified in orders, according to the number of superposed
radicals in their expression; a function f(+',r”, ..., W , ’W, ...) of order pu,
with 7/, r”, ..., p/, p”,... of order < p and f rational, such that none of the "/py
is a rational function of the r and the other “¢/py, is said to be of degree m if it
contains m radicals 7/py. Such a function may be written f(r’, 7", ..., /p) with
p of order w — 1, ¥/, ¥”, ... of order < p and degree < m — 1, and f rational,

it is then easy to reduce it to the form go + qlp% + qu% +...+ qn,lp%, with
coefficients qo, q1, q2, . .. rational functions of p,r’,r”, ..., so of order < u and
degree <m — 1, p% not a rational function of these quantities. Abel carries out the
supplementary reduction to the case ¢; = 1. In order to do this, he chooses an index
w such that g, # 0 and puts gj, p* = p;, which will play the role of p. The starting
point of his preceding paper has been completely justified.

In the second paragraph, Abel proves that if an equation is algebraically solvable,
one may write its solution in a form in which all the constituent algebraic expressions
are rational functions of the roots of the equation. The proof is more precise than
that of the 1824 paper, but follows the same lines. The coefficients of the equation
are supposed to be rational functions of certain independent variables x’, x”, x”, ...

In the third paragraph, Abel reproduces the proof of Lagrange’s theorem (1771)
according to which the number of values that a rational function v of n letters may
take under the n! substitutions of these letters is necessarily a divisor of n! and
Cauchy’s theorem (1815) which says that if p is the greatest prime number < n, and
if v takes less than p values, then it takes 1 or 2 values. Indeed it must be invariant
for any cycle of p letters, and it is possible to deduce from this that it is invariant for
any cycle of 3 letters and from this by any even substitution. Thus, as Ruffini had
proved, a rational function of 5 variable cannot take 3 or 4 values. Abel then gives,
following Cauchy, the form of a function v of 5 letters x, x2, ... , xs which takes 2
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values: it may be written p 4+ gp, where p and ¢ are rational symmetric functions
and

o =@ —x)(x —x3) ... (X4 — Xx5)

is the square root of the discriminant. Indeed if v; and v, are the two values of v,
v; 4+ vy = tand (v vy)p = t; are symmetric and v; = %t + 2%,0. Finally, Abel gives
the form of a function of 5 quantities which takes 5 values: it is ro + 71 x + rox? +
r3x> 4+ rax*, where ro, 1y, 12, r3 and r4 are symmetric functions of the five quantities
and x is one of them. Indeed this is true for a rational function of xi, x», x3, X4, x5
which is symmetric with respect to x, x3, x4, xs. Now if v is a function which takes
5 values vy, vy, v3, V4, V5 under the substitutions of x;, x;, x3, x4, X5, the number @
of values of x{"v under the substitutions of x, x3, x4, x5 is less than 5, otherwise it
would give 25 values under the substitutions of xj, x7, x3, x4, x5 and 25 does not
divide 5!. If u = 1, v is symmetric with respect to x;, x3, x4, x5 and the result is
true; it is also true if u = 4 for the sum v; + vy + v3 + v4 + vs5 is completely
symmetric and v; + vo + v3 + vgq is symmetric with respect to x,, x3, X4, X5, SO
Vs = V] + vy + v3 + v4 + v5s — (V] + va + v3 + vyg) is of the desired form. It is
somewhat more work to prove that & cannot be 2 or 3. Eliminating x between the
equations

(x—xp))x —x)(x —x3)(x —x4)(x — x5) = O—axt b —cx?+di—e=0
and ro + r1x + rax? + r3x® + ryx* = v (a quantity taking 5 values), one obtains
X =S50+ S1v+ szv2 + S3v3 + 54v4

where so, 51, 52, 53 and s4 are symmetric functions. The paragraph ends with the
following lemma: if a rational function v of the 5 roots takes m values under the
substitutions of these roots, it is a root of an equation of degree m with coeffficients
rational symmetric and it cannot be a root of such an equation of degree less than m.

The fourth paragraph finally gives the proof of the impossibility of a solution by
radicals. As in the preceding paper, Abel proves that an innermost radical Rn =v
in a hypothetical solution has an index m (supposed prime) equal to 2 or 5;if m = 5,
one may write

X =50+ is% —i—szR% +S3R% +S4R%
1
and S1R% = g(xl +a*xy + oxs; + alxg + oxs)
where « is a fifth root of 1, and the second member takes 120 values, which is

impossible for it is a root of the equation z° — sf R=0.Som =2and /R = p+gs
with p, g symmetric and s = (x; — x2) - - - (x4 — xs5); the second value is —/R =

p —gs, so p = 0. Then, at the second order appear radicals Ja + ,Bx/s—2 — RS with
«, B symmetric as well as y = Ja? — f252; p = VR + 5%/? takes 5 values so that
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2 3 4 1 2 3 4
x=so+s1p+sop +s3p” +sap” =to+1,R5 +6HR5 +1R5 +14R5

with 1y, t1, 12, t3 and t4 rational in a, b, ¢, d, e and R. From this relation, one deduces

Uil—

1 ,
HhR3 = g(xl —I—a4x2 +a3X3 +Ol2)C4 +axs) =p’,

where « is a fifth root of 1; p/5 = tfR =u+u'\/s* and (p/5 —u)? = u'’s2, an
equation of degree 10 in p’, whereas p’ takes 120 values, a contradiction.

Abel reproduced this demonstration in the Bulletin de Férussac (1826, t. 6,
(Euvres, t. 1, p. 8794).

In a short paper published in the Annales de Gergonne (1827, t. XVII, Euvres,
t. I, p. 212-218), Abel treated a problem of the theory of elimination: given two
algebraic equations

Oy =po+pIy+ Dy 4. A puy" Y =0
and Yy =qo+qy+@y +...+ g1y +y"

with exactly one common solution y, compute any rational function fy of this
solution rationally as a function of pg, pi, ..., Pm—1, 90,41, - - - » gn—1- He denotes
the roots of ¥ by y, yi, ..., y,—1 and the product of the py; with j # k by Ry

(yo = y). As gy = 0, Rk—Ofork>lsothatfy=% where @ is any

rational function. If fy = -=, with F and x polynomial, one may take 6 = x to get

fy = 2 Fyi-Ry
Y= Yook ) ) )
Abel proposes a better solution, based on the observation that R, being

a symmetric function of yi, y,,...,y,—1, may be expressed as R = py +
01y + pay? + ...+ p._1y"', with coefficients pg, p1, 02, ..., Pu_1 polyno-
mial in po, p1,.-- s Pm—1-90, 941> - - »qn—1, and the same is true for Fy - R =
n—1

to+ty+ny?+...+1,_1y""". Naturally, Ry = /00+,01yk+,02yk +. +Pn 1k
and Fy, - Ry = to + tiyk + tzy,% +.o oy ! Now taking Oy = , -, we have

Rk B L yk n]
AP DD D Zvﬂ

= Pn—1

Ry Fy
vk
where F’ is not the derivative of F!), the value is 2=L, where 1, is the coefﬁ(:lent

t —1
1

and, in the same way, =t,_1,so0that Fy = t”—‘_l For a rational function ﬂ

of y"~!in F'y - R. In the case of fy = y,let R = py"~! + p/y"~2 4 ...; then

Ry=py"+ 0oy +...= (0 — pgu_)y" " +

sothaty = —¢g,—1 + %.
In his researches about elliptic functions, published in the second and the third
volume of Crelle’s Journal (1827-28, (Euvres, t. 1, p. 294-314 and 355-362) Abel
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met some new cases of algebraic equations solvable by radicals. Such equations
were known from the time of A. de Moivre (1707), who showed that the equation
of degree n (odd integer) giving sin 4 is solvable by radicals, when sina is known,

the formula involving sin 27” in its coefficients. Then Gauss (1801) proved that the

cyclotomic equation of degree n — 1 (n a prime number) giving the n-th root e s
also solvable.
Abel developed an analogous theory for elliptic functions instead of circular
X

functions. Let x = gu be defined by u = [ ——9 (¢, ¢ given real param-

v Y of V=) (142 e.ce P
eters); then ¢ is a uniform meromorphic function in the complex domain, with two
independent periods

1/c¢
dx
20 =4 ,
OJa-&ma+éw
1/e

d.
%w:M/ - .
J V(I =e2x2) (1 + 2x2)

Abel discovered that the equation of degree n? giving ¢ (£) when ¢(a) is known
is solvable by radicals, the formula involving ¢ (%) , §2 being a period, in its coef-

n?—1
2
decomposed in 7 + 1 equations of degree "5, all solvable, by means of an equation

of degree n + 1, which, in general, is not solvable by radicals. For certain singular
moduli £, for instance when £ = 1, /3 or 2 + /3, the equation of degree n + 1 is
also solvable; Gauss already knew this lemniscatic case, where ¢ = e = 1.
The base for these results is Euler’s theorem of addition for elliptic inte-
grals, which gives, in Abel’s notation ¢(o + B) = %, where foa =
1 — 2@*a, Fu = /1+ e2p?a. So the roots of the equation for ¢ (%) are
<p((—1)’"+“% + M) Jml, n) < % and they are rational functions of

@(B), fB, FB, where B = .. Abel defines

2 2pwi
op= Y w(ﬁ+$>, Vb= ). 9“¢1<ﬂ+ “f”)

—1 —1
|m|< 251 ul= 251

-
andyif= Y 64 <ﬂ— ’“f”),

n—1
lnl="5~

ficients. The equation of degree giving the non-zero values of ¢? (%) may be

where 6 is an n-th root of 1; he proves, by means of the addition theorem, that 8-y 8
and (¥8)" 4 (y, B)" are rational functions of e, so that 8 = v/ A + ~/ A2 — B" with

n—1

A and B rational in ga. Indeed, ¢ 8 = B+ 22: (¢ (B+ 22) + ¢ (B — 222)) ista-
m=1
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tional with respect to 8 = x and ¢, (,B + 2"}7”) = RM:I:R;L\/(I —c2x2)(1 + €2x2),
where R, and R;L are rational in x, so that ¥/8 and 1 8 have the same form and v, 8
is deduced from v by changing the sign of the radical /(1 — c2x2)(1 4 ¢2x2). Now
o1 (B+22) =By (/3 + iy 2"7’”) = 67¥yB and ¥ (/3 + Kol 2"7‘”> =
0"’1&1 B so that {8 - ¥ 8 and (B8)"+(; B)", which are rational in ¢f, take the same
value when ¢f is replaced by any other root of the considered equation and are
therefore rational in ga. The n — 1 different values of 6 give n — 1 values A ; and B;
for A and B and one has

ki 1 . >
o1 <ﬂ+ . )Z(’)‘Hﬁzgf JA;+ /A2 B (36)
J

ThenAbeluses Y8 =Y. 0" (B+ 22), y38= Y 0"¢ (B — 22),

—1 —1
|m\§"T \m|§nT

such that ¥ - Y38 and (¥»2B8)" + (¥3B)" are rational functions of ¢, 8. He gets
V2B = v/ C + +/C? — D" with C, D rational in ¢, 8 and

1
o n ) 2
o=~ ¢1ﬂ+§. Cj+,/Ct-D"]. (37)
J

The radicals in (36) and (37) are not independent (otherwise each formula should

give n"~! different values). Indeed, if ¥*g = > 6%, </3 + 2’t—f”> vip =
Inl<tzt

DA (,3 — M) where 6 = cos 27” + i sin 27”, Yk (,3 + %) =0 *ykp

1 n
n—
[ul=5=

P k vkp k
and ¥} (B + 22) = 0y B so that (];//j,/gk + (Vf}lﬂ)" and (V/Yjﬁﬁ‘" +

vkp
Wipkr

are

rational functions of pa. As

(I/flﬂ)nZAl—i—‘/A%—B}f and (dfllﬁ)n:Al_ /A%_Blll’

it is easy to deduce ¥*B = (y'B)* - (F + Hy\/ AT — BY), with Fy and Hj rational

in ga, that is | A + /A2 — B! = (A, +,/A> — B!) (Fx + Hiy /A2 — BY). In the
same way, | Cy +/C2 — D} = (C) +,/C2 — D) i (Ki+ Li,/ A2 — BY), with K

and L rational in ¢a.
For the other problem (division of the periods by an odd prime n), the roots are

5 (Mo £ puwi
q) e —

—1
>,0§m,uf—n2 (m, ) # (0,0);
n

Abel groups them according to the points m:u of the projective line P (F,), which

gives n+ 1 groups of% roots each: v(1,0), v(m, 1),1 <v < %,O <m<n-—1.
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He puts r, = gpz ("n—‘”) Tom = (pz (u@) Ifp=+vy ((p2 (%)) is any rational

symmetric function of the ¢? ("7“/), l<k<2d
and Y, ,, = ¥ry,,. Consider now the equation of degre n + 1 of which the roots
are Yry and Yy, (0 < m < n — 1). The sum of the k-th powers of these roots is
% times the sum of the (¥r,)* and of the (1//rv,m)k , SO it is rational with respect to
e and ¢, and the same is true for the coefficients of the considered equation of degree
n + 1. We thus see that the equations of degree % respectively giving the r, and
the r,,, for m fixed have coefficients given by an equation of degree n + 1. In fact
one such auxiliary equation of degree n 4 1 is sufficient, for when a function such as
p = ¥ry is given, any other such function g = 6r; is a rational function of p. Abel
proves this by a method due to Lagrange, determining 6r; and the 6r ,, as solutions

of the linear system

, @ = mo+ pwi, then Yr, = Yry

Wr)*0r + (Yr10)orio + W)k ori g + oA i) O = st

where the s; are easily seen to be symmetric with respectto ry, 72, ... , 710, ... and
so rational functions of e and c.
In order to solve the n 4+ 1 equations of degree %, with roots <p2 (’%), Abel

procedes as Gauss did for the cyclotomy: putting & = “,’—; and « a primitive root
modulo n, the roots may then be written ¢*(a‘e), 0 < £ < “53 and the Lagrange

resolvant is
Y(e) = (p2(8) + gz)2(oz8)9 +...+ <p2 (anT48> 9%3,

n—1
2T
is symmetric with respect to the % roots. Thus v is known when the equation of
degree n + 1 is solved. Varying 6, we get ”2;1 values vy for v and

where 6 is a th root of 1. It is a rational function of ¢?(¢) and its ”T_l—th power v

2 n—1
(pz(g):m(_anS+ T\/v—l—l—...-l- ";‘vn23>,

where —pnz3 = ©*(e) + ¢*(ae) + ... + ¢? (a%e) corresponds to € = 1 and

n—l
is symmetric. The n — 1 radicals are not independent: s; = zliﬁ is a rational

T K
(*2vm)
function of ¢? (&) which remains invariant when ¢ is replaced by o ¢, so it is a rational
function of the root of the auxiliary equation of degree n + 1.
When ¢ = ¢ = 1, w = @ and there exists a complex multiplication, that is
a formula

p(m + pi)d = ¢d - T,

for m, pu integers and m + 1 odd, with T a rational function if ¢*(8). This permits
the solution by radicals of the equation giving ¢ (%) whenever n is a prime number
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of the form 4v + 1. Indeed, consider n = > + B2, where « and 8 are relatively prime
integers such that « + B is odd, and there exists integers m, t such that | = 2mo —nt,;

mw mw __ 2ma
then aifi Tom =0 and

()= (e m)=crre(2)

w
a+pi
m-+pi
a+pi

so it is sufficient to consider the equation for go( ) = ¢4$. This equation is

equivalent to ¢p(« + Bi)§ = 0 and its roots are x = ¢ ( a)) , m, [ integers; it is

easy to reduce these roots to the form x = ¢ (ai“/’gi) Lol < % = 2v and to see that,

in this form, they are all distinct. Moreover, the equation has no multiple roots, and
finally, since ¢ is an odd function, we have to consider an equation of degree 2v, with
roots ¢*(8), *(268), ... , 9*(2v8) or ¢*(8), P*(&8), P*(&%68), ... , *(e*'~168), where
& is a primitve root modulo n. Then, as for the preceding problem, one sees that

0> (") = 21—U (A + 9””v2_1v + sze’zmv% + SQU,19’(2“’1)’"U%), where

v = (92(8) + 0 (e8) + 0202 (28) + ... + 021221 5))2,
@2 () + 652 (e8) + 6% @2 (€28) + ... + 6P Dk (s2-15)
(§02(8) + 9§02(85) + 92(,02(823) +...+ 92V—1¢2(82v—18))k ’
A = (02(5) + (PZ(S(S) + (02(825) 4o+ ¢2(82v718)

Sk =

are rational with respect to the coefficients of the equation, so of the form a + bi
with a and b rational numbers. Abel oberves that, when 7 is a Fermat prime number
2N 11, all the radicals in the solution are of index 2 for 2v = 2¥ ! and 92"~ = 1. He
applies these results to the division of the lemniscate of polar equation x = +/cos 26
(x distance to the origin, # polar angle), for which the elementary arc is —&

/\/]—x“-

All these examples of solvable equations (Moivre, Gauss, elliptic functions) gave
Abel models for a general class of solvable equations; following Kronecker, we call
them Abelian equations and they are the object of a memoir published in the fourth
volume of Crelle’s Journal (1829, (Euvres, t. 1, p. 478-507). To begin with, Abel
defines (in a footnote) the notion of an irreducible equation with coefficients rational

functions of some quantities a, b, c, ... considered as known; his first theorem states
that if a root of an irreducible equation ¢x = 0 annihilates a rational function fx of
x and the same quantities a, b, c, ... , then the it is still true for any other root of

¢x = 0 (the proof is given in a footnote).

The second theorem states that if an irreducible equation ¢x = 0 of degree u has
two roots x” and x; related by a rational relation x" = 6x; with known coefficients,
then the given equation may be decomposed in m equations of degree n of which
the coefficients are rational functions of a root of an auxiliary equation of degree
m (naturally u = mn). First of all, the equation ¢(6x;) = 0 with the theorem I
shows that ¢(Ax) = 0 for any root x of px = 0; so 6x’ = 62xy, 6%x, ... are all
roots of x = 0. If €™x; = §™""x; (the equation has only a finite number of
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roots), or 6" (0"x;) — 0™x; = 0, we have 0"x — x = 0 for any root of px = 0
by the theorem I and, in particular 6"x; = x; if n is minimal with this property,
X1, 60x, ..., 0" 1x; are distinct roots and the sequence (6" x1) is periodic with period
n. When o > n, there exists a root x, which does not belong to this sequence; then
(™ x7) is a new sequence of roots with exactly the same period for 6”x, = x; and
if 0*x, = x, for a k < n, we should have 6*x; = x;. When u > 2n, there exists
aroot x3 different from the 6" x; and the 0" x,, and the sequence (6" x3) has a period
n. Continuing in this way, we see that p is necessarily a multiple mn of n and
that the u roots may be grouped in m sequences (Qkxj)osksn,l G=12,...,m).
Note that this proof is analogous to that of Lagrange establishing that a rational
function of n letters takes, under the substitutions of these letters, a number of values
which divides n!. In order to prove his second theorem, Abel considers a rational
symmetric function y; = f(xy, fx, ..., 0"~1x,) = Fx, of the first n roots and the
corresponding y; = Fx; = F(6*x;) (2 < j < m); for any natural integer v, the
sum y| + y5 + ...+ y,, is symmetric with respect to the mn roots of px = 0, so
it is a known quantity and the same is true for the coefficients of the equation with
the roots yi, y2, ... , Y. Since the equation with the roots xi, 0xy, ... , 6"'x| has
its coefficients rational symmetric functions of xj, 6xy, ... , 0"y, each of these
coefficients is a root of an equation of degree m with known coefficients. In fact
one auxiliary equation of degree m is sufficient: this is proved by the stratagem of
Lagrange already used by Abel for the division of the periods of elliptic functions
(Abel notes that it is necessary to choose the auxiliary equation without multiple
roots, which is always possible).

Whenm = 1, u = n; the roots constitute only one sequence xi, 0xy, . .. , Or—1ly,
and the equation gx = 0 is algebraically solvable as Abel states it in his theorem III.
We now say that the equation ¢x = 0 is cyclic. This result comes from the fact that
the Lagrange resolvant

x4 abx + a?0*x + ...+ o

(x any root of the equation, « pu-th root of 1) has a u-th power v symmetric with
respect to the u roots. We now get x = i(—A + #/1.)1 + Y, + coo+ WD),
where vy, vy, ..., v,— are the values of v corresponding to the diverse p-th roots
aof I (¢ =1 forvg) and —A = /vy. The u — 1 radicals are not independent for if
o= cos% +«/—1sin27” and if

Yor = x + o*0x + o®0%x + ... + o DRgr

the quantity &/vi( W)“‘k = qa; is a symmetric function of the roots of ¢x = 0,
so it is known. Abel recalls that this method was used by Gauss in order to solve
the equations of the cyclotomy. The theorem IV is a corollary of the preceding one:
when the degree u is a prime number and two roots of gx = 0 are such that one of
them is a rational function of the other, then the equation is algebraically solvable.

Asa,—1 = ¢/v,—1- &/vi = a, does not change when « is replaced by its complex
conjugate, it is real when the known quantities are supposed to be real. Thus v; and
v,,—1 are complex conjugate and
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v =c+~—1Var — 2 = (/p)*(cos§ + +/—1 -sin§),

and so
5+2 S§+2
M/vlzﬁ.(cosﬂ_{_\/_l.sinM).
w 2

So in order to solve px = 0 it suffices to divide the circle in u equal parts, to divide
the angle § (which is constructible) in u equal parts and to extract the square root of
p. Moreover, Abel notes that the roots of gx = 0 are all real or all imaginary; if p
is odd they are all real.

The theorem VI is relative to a cyclic equation ¢x = 0 of composite degree © =
my-my---my, = myp - pi. Abel groups the roots in m; sequences (Hk’”'*fx)ogkfm,l
(0 < j <my—1)of p; roots each. This allows the decomposition of the equation in
m equations of degree p; with coefficients rational functions of a root of an auxiliary
equation of degree m. In the same way, each equation of degree p; = m, - py is
decomposed in m; equations of degree p; using an auxiliary equation of degree m,
etc. Finally, the solution of ¢x = 0 is reduced to that of w equations of respective
degrees my, my, ... ,my,. As Abel notes, this is precisely what Gauss did for the
cyclotomy. The case in which m, m,, ... ,m, are relatively prime by pairs is
particularly interesting. Here for | < k < w an auxiliary equation fy; = 0 of degree
my allows to decompose px = 0in m;, equations Fy(6/x, yr) = 0 of degree ny = mik
(0 < j < my —1). Since x is the only common root of the w equations Fy(x, yz) = 0
(for 0*mrx = §“"ax with k < n, — 1 and ¢ < n, — 1 implies km, = €m, and then
k =€ = 0if p # q), itis rational with respect to y, y2, ... , Ye. S0, in this case, the
resolution is reduced to that of the equations fi1y; = 0, oy =0,..., foVe =0
of respective degrees m, my, ... , m, and with coefficients known quantities. One
may take for the my, the prime-powers which compose .

All the auxiliary equations are cyclic as is ¢x = 0, so they may be solved by the
same method. This follows from the fact that if

y=Fx = f(x,0™x, 0% x, ..., 9(”_1)’")5)

is symmetric with respect to x, 8"x, 6*"x, ... ,0""D"x so is F(0x). Then, by
Lagrange’s stratagem F(6x) is a rational function Ay of y.

Abel ends this part of the memoir with the theorem VII, relating to a cyclic
equation of degree 2: its solution amounts to the extraction of w square roots. This
is the case for Gauss’ division of the circle by a Fermat prime.

The second part deals with algebraic equations of which all the roots are rational
functions of one of them, say x. According to Abel’s theorem VIIL, if px = 0 is
such an equation of degree w and if, for any two roots 6x and 6,x the relation
00,x = 6,0x = 0 is true, then the equation is algebraically solvable. Abel begins
by observing that one may suppose that ¢x = 0 is irreducible. So that if n is the
period of (6*x), the roots are grouped in m = 2 groups of n roots. Each group
contains the roots of an equation of degree n with coefficients rational functions
of a quantity y = f(x,0x,6%x,...,0" 'x) given by an equation of degree m
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with known coefficients, which is easily seen to be irreducible. The other roots
of the equation in y are of the form y; = f(0,x, 60,x,6%0x,...,0" 16;x) =
f(01x,0,6x,0,0%x, ... ,0,0" 'x) (by the hypothesis), so rational symmetric with
respect to x, Ox, 0%x, ... , 6" !x and (again by Lagrange’s stratagem) rational in y:
y1 = Ay. Now if y» = A1y = f(6ax, 00:x, 0%6rx, ... , 0" '02x),

A1y = Ays = f(6162x, 00,05x, ... , 0" '0,6:x)
= f(0201x, 00,0,x, ... ,0"10,0,x) = Airy

so that the equation in y has the same property as the initial equation ¢x = 0 and it
is possible to deal with it in the same manner. Finally ¢x = 0 is solvable through
a certain number of cyclic equations of degrees n, ny, ns, ... ,n, such that u =
nniny - - - N, this is Abel’s theorem IX. In the theorem X, Abel states that when
w = &'ey’ ...k with g1, €2, ..., & prime, the solution amounts to that of v
equations of degree ¢, v, equations of degree &5, ... , v, equations of degree &, all
solvable by radicals.

As an example, Abel applies his general theorem to the division of the circle

in u = 2n + 1 equal parts, where  is a prime number; the equation with roots
2 4 2nmw

cos 5, oS SF, ..., cos SF has rational coefficients and it is cyclic. If m is a prim-
itive root modulo 1, the roots are x, Ox, ... , 0" !x where x = cos 2/—7; = cosa and

6x = cosma, polynomial of degree m. As Gauss has proved, the division of the
circle is reduced in p parts is reduced to the division of the circle in n parts, the
division of a certain (constructible) angle in n parts and the extraction of a square
root of a quantity

P = |()C + abx + az@zx + ...+ 05”710”71)()
X (x+a" ' 0x + " 0% 4+ ..+ " ).

It is not difficult to compute +p = %n — i — %(ot—i—oz2 +...+a"H= %n + ‘—11 so the
square root is +/p conformally to Gauss’ result. After his notebooks, we know that
Abel also wanted to apply his theory to the division of periods of elliptic functions
with a singular modulus, precisely in the case where w = w+/2n + 1.

On the 8 of October 1828, Abel sent the statement of three theorems on algebraic
equations to Crelle.

A. Given a prime number n and n unknown quantities xy, xo, ... , X, related by
the relations @(x1, X2, ... , X)) =@(X2, X3, ... , X)) =...=@Xp, X1, ... , Xp—1)=0,
where ¢ is a polynomial of degree m, the equation of degree m" — m obtained
by elimination of n — 1 of the quantities and division by the factor ¢(x, x, ... , x)
is decomposable in m—m equations of degree n, all algebraically solvable, with
the help of an equation of degree ’""T_’” Abel gives, as examples, the cases where
n=2m=3andn = 3, m = 2; in these cases m" — m = 6 and the equation of
degree 6 is algebraically solvable.

B. If three roots of an irreducible equation of prime degree are so related that one
of them is rationally expressed by the other two, then the equation is algebraically
solvable.
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This theorem is given, as a necessary and sufficient condition, by E. Galois as
an application of his Mémoire sur les conditions de résolubilité des équations par
radicaux (1831) and it was at first interpreted as the main result of this memoir.

C. If two roots of an irreducible equation of prime degree are so related that
one of them is rationally expressed by the other, then the equation is algebraically
solvable.

This statement is the same as that of the theorem IV in the 1829 memoir (which
was composed in March 1828).

Abel left uncompleted an important paper Sur la théorie algébrique des équations
(Euvres, t. 11, p. 217-243). In the introduction, he explains in a very lucid way his
method in mathematics, saying that one must give a problem such a form that it
is always possible to solve it. For the case of the solution by radicals of algebraic
equations, Abel formulates certain problems:

(1) To find all the equations of a given degree which are algebraically solvable.
(2) To judge whether a given equation is algebraically solvable.
(3) To find all the equations that a given algebraic function may satisfy.

Here an algebraic function is defined, as in the 1826 paper, as built by the
operations of addition, subtraction, multiplication, division and extraction of roots
of prime index. There are two types of equations to consider: those for which the
coefficients are rational functions of certain variables x, z, 7, z, ... (with arbitrary
numerical coefficients; for instance the general equation of a given degree, for which
the coefficients are independent variables) and those for which the coefficients are
constant; in the last case the coefficients are supposed to be rational expressions in
given numerical quantities o, 8, y, ... with rational coefficients. An equation of the
first type is said to be algebraically satisfied (resp. algebraically solvable) when it
is verified when the unknown is replaced by an algebraic function of x, z, 7/, 7", . ..
(resp. when all the roots are algebraic functions of x, z, 7/, z”, . ..); there are anal-
ogous definitions for the second type, with “algebraic function of x, z, 7/, z”,...”
replaced by “algebraic expression of , 8, y, ...".

In order to attack his three problems, Abel is led to solve the following ones “To
find the most general form of an algebraic expression” and “To find all the possible
equations which an algebraic function may satisfy”. These equations are infinite in
number but, for a given algebraic function, there is one of minimal degree, and this
one is irreducible.

Abel states some general results he has obtained about these problems:

(1) If an irreducible equation may be algebraically satisfied, it is algebraically
solvable; the same expression represents all the roots, by giving the radicals in
it all their values.

(2) If an algebraic expression satisfies an equation, it is possible to give it such
a form that it still satisfies the equation when one gives to the radicals in it all
their values.

(3) The degree of an irreducible algebraically solvable equation is the product of
certain indexes of the radicals in the expression of the roots.
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About the problem “To find the most general algebraic expression which may
staisfy an equation of given degree”, Abel states the following results:

(1) If an irreducible equation of prime degree w is algebraically solvable, its roots
are of the formy = A+ /R + ¥/R. + ...+ {/R,_1, where A is rational and
Ri, Ry, ..., R, areroots of an equation of degree u — 1.

This form was conjectured by Euler (1738) for the general equation of degree
.

(2) If an irreducible equation of degree u®, with u prime, is algebraically solvable,
either it may be decomposed in u®# equations of degree u” of which the
coefficients depend on an equation of degree 1 ~#, or each root has the form
y=A+ ¥R+ YR+ ...+ ¥R, with A rational and Ry, R, ... , R, roots
of an equation of degree v < u* — 1.

(3) If an irreducible equation of degree 1 not a prime-power is algebraically solv-
able, it is possible to decompose n in a product of two factors @ and u, and
the equation in u; equations of degree 1, of which the coefficients depend on
equations of degree ;.

(4) If an irreducible equation of degree u®, with p prime, is algebraically solvable,
its roots may be expressed by the formula y = f(¥/R;, /R,, ..., ¥/R,) with
f rational symmetric and Ry, Ry, ..., R, roots of an equation of degree <
u* —1.

A corollary of (3) is that when an irreducible equation of degree u =
Wi s o e (@, o, - - ., Mo prime) is algebraically solvable, only the radicals
necessary to express the roots of equations of degrees 11|, 152, ... , 1% appears in
the expression of the roots. Abel adds that if an irreducible equation is algebraically
solvable, its roots may be found by Lagrange’s method. According to this method,

an equation of degree w is reduced to the solution of (/&;#1))! equations of degree ¢(u)

(¢ the Euler function) with the help of an equation of degree % (Abel text leaves
a blank at the place of these numbers). Abel announces that a necessary condition
for the algebraic solvability is that the equation of degree (’;a}))! have a root rational
with respect to the coefficients of the proposed equation; if u is a prime number, this
condition is also sufficient.

The first paragraph of the paper explains the structure of algebraic expressions,
as was done in the published 1826 article; this time, the order of such an expression
is defined as the minimum number of radicals necessary to write it. In the second

paragraph, a polynomial

Y A AYTE AT = ey, m)
is said to be of order m when the maximum order of its coefficients A, A', .. : is m.
The first theorem states that an expression 7+ yl’%1 +t2y1’%‘ SR o P ylﬂ’ll1 , with
fo, t1, ... , ty,—1 rational with respect to a pi-th root w of 1 and radicals different
from yl‘%l, isOonlyifto =1t = ... =1,,-1 = 0. The second theorem states

that if an equation ¢(y, m) = 0 of order m is satisfied by an algebraic expression
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y = po+ p1 Yy +... of order n > m, it is still satisfied by the expression with
o /Yy, w? V1, ... instead of ~/yy, where w is a p-th root of 1. After the third
theorem when two equations ¢(y, m) = 0 and ¢, (y, n) = 0 have a common root, the
first one being irreducible and n < m, then ¢, (y, n) = f(y, m) - ¢(y, m). Then the
fourth theorem says that ¢ (y, n) is divisible by the product [] ¢(y, m) of ¢(y, m)
and the polynomial ¢'(y, m), ¢”(y, m), ..., 9**~D(y, m) obtained by successively
replacing in ¢(y, m) the outermost radlcal }\/— by o /y1, w? Yy, ... (0 u-th
root of 1); this comes from the fact that ¢'(y, m), ¢"(y,m), ... , "~ D(y, m) are
relatively prime by pairs. In the fifth theorem, Abel states that if ¢(y, m) = 0 is
irreducible, so is [ | ¢(y, m) = (pl(y, m') = 0.

m . . .
Now if a,, = f y“"’ , ym”‘]l ,... ), of order m, is a root of an irreducible

equation ¥(y) = 0, ¢ must be divisible by y — a,,, and so also by [[(y — an) =
¢(y, mp) (theorem IV), which is irreducible (theorem V). It now follows that ¥ is
divisible by [T@(y, m1) = @1(y, m2) and by [Te1(y, m2) = ¢2(y, m3), etc., with
m > mj > my > ... Finally, we arrive at some m,; = 0 and ¢,(y, 0) divides
¥(y) and has rational coefficients, so that ¢ = ¢,. This leads to the degree of ¥,
for that of ¢(y, m1) iS i, that of ¢((y, m2) iS m - tm,, ... and that of ¢, is
m * Mmy - -+ Mm, = (. This is the third general result of the introduction, with the
further explanation that the index of the outermost radical is always one of the factors
of the degree 1. The first general result of the introduction is also a consequence of
that fact, as the fact that an algebraic expression solution of an irreducible equation

of degree 1 takes exactly u values.
In the third paragraph, Abel first deals with the case in wh1ch W is a prime

number; then u,, = /Landam = p0+p1sﬂ +p2sﬂ +. +1’u 18 i , withs = y,,;

giving to the radical s# its u values s# , a)sﬂ, ol ‘s#, where w is a p-th root

of 1, we get p values z1, 22, ... , 7, for a, and, as the given equation has only p
roots, we cannot get new values by replacing the p; or s by other values p/i and s’
obtained by changing the value of the radicals they contain. Now if
1 —1 ,p=l 1 _q kL
po+ Pi@s'E .+ p, TS = po 4 prost 4. 4 puo Lo,
we see that different values wy, wy, ... , w,—; of the root w correspond to different
values of the root @’ of 1. Writing the corresponding equalities and adding, we obtain

Py = IPo, SO py = po and then
1 1
wpis'® = pisi(wo + oo oo+ .+ a)ﬂ,la)””l) + ...

So

pn=1

1 1
S’“=f(w,po,p{),p1,p’1,...,s “>_QO+6115“+612S"+ A+ G s

1 2
and 8" =ty + 15" + st + ...+ 1S M , although Abel’s given proof of the
factthatty =, = ... = t,t_l = 0 is not quite complete. In the notes at the end
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of the second volume of Abel’s Works, Sylow has explained how to complete the
proof (p. 332-335) in order to finally obtain p'|'s’ = p'“s"” for some v between 2 and

w — 1; this shows that p{'s is root of an equation of degree < u — 1.
Changing s, it is possible to get p; = 1 and then, we have as usual py =

1 2
%L(zl + 22+ ...+ z,) aknown quantity, s» = i(zl + oz 4. + wz,), past

= i(zl + "2z + ...+ @%z,), . . . ; this gives

n—1
Pas = (;) (zl—i—a)_zZz—i—. . .+w_2(”_l)zﬂ)(21+w_122+- . .+w_(M_I)ZM)’L_2’

1\"7?
p3s = (;) (z4 +(,()73Z2+. . .+a)73(u71)2,,’)(Z1 +(1)71Z2+. . -+CU4M71)Z/,L)M73a etc.

By the usual Lagrangian stratagem, Abel proves that ¢, = p,,s is a rational
function of s and the known quantities for 2 < m < pu — 1. The v distinct values
of s are of the form pl,s™ with 2 < m < u — 1; Abel shows that the irreducible
equation of which s is a root is cyclic of degree dividing u — 1, with roots s, s; =
Os, ..., s9_1 = 0" 's, where s = (fs)"s™", f rational, 2 < m < pu — 1 and &
adivisor of i — 1. He finally arrives at the following form for the root z; of ¥y = 0:

1 1 m m

11 1 m m
Zi=po+st s+ ) Fois-sE+@is-s|

2 m2 m

+--~+901Su71'S£1+¢25'Sm7+90251'51“ +... 4+ @sr-s)t

[N}

m
1
me—1 me—1

ma—l
T I3 I3
oot Pa1SS Q181 08 + .ot @e18-1 -8

v—1 >

where the ¢; are rational functions and

| | me 2u m(vfl)a
st=Aara, ay,® ...a, [
N o 2 3 1
st =A1a7alﬂ a," ...al_,,
1 a=Da L m® m(V=2e
LSt =Aa alﬂaz“ ceea, {0,
generalising the form communicated to Crellein march 1826. Naturallya, ay, . . .,a,—;

are roots of a cyclic equation of degree dividing i — 1, but Abel does not say anything
aboutit, that part of the paper being almost reduced to computations. Kronecker (1853)
rediscovered this result, and stated it more precisely, also studying the form of the roots
of cyclic equations.

The last part of the paper contains computations to establish the second state-
ment relative to the problem “To find the most general algebraic expression which
may satisfy an equation of given degree”; Sylow gives an interpretation of these
computations at the end of the volume (p. 336-337).
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4 Hyperelliptic Integrals

Abel studied Legendre’s Exercices de Calcul intégral at the fall of 1823 and this
book inspired him a series of new important discoveries; we already saw some of
them. A memoir presented in 1826 to the Royal Society of Sciences in Throndhjem
(Ewuvres, t. 1, p. 40-60) is devoted to a generalisation of Legendre’s formula for
the exchange of the parameter and the argument in elliptic integrals of the third
kind. Abel considers an integral p = [ ei‘%dx taken from x = ¢, where f is

a rational function and @x = k(x + &)f(x + &) ... (x + ™" with B, 8, ...
rational numbers; derivating with respect to the parameter a and comparing with the

derivative of eji“;x with respect to x, he obtains
dp ¢a
p (f + —> p= (38)
a pa

fx fe
epx  epc o) e o
- + +E E pap/e x - xP7P "2dx
X—a c¢c—a pY ¢

Z ﬂ(p) e-f"(pxdx N Z Z wP s efx(pxdx
a+ aP x + a® (a+ 8(1’))“('))—17/4‘2 (x + E(P))P’

if fr=>YyPxr+3° 80 When f is polynomial (§” = 0) and
(x+g(p))/t(”)

Yx=@x4+a)(x+a)...x+a™),
there is another formula
dp , ¢'a ePox - Yx e P
- _ f a+ — — _
da pa Yala —x)  Ya(a —c)

35 e 1) / Fox - xPdx,

/)(])+P/+])

(39)

Lhpetrv (v .
where ¢(p, p') = (§~3--.)(¢;+p’+2) + ( 22...(p+p’+]) (F, F', ... denoting the values at

x = 0 of the successive derivatives of a function Fx).
As f(dp— <%§‘ + fla )pda) el pe taking ¢ such that e/gc = 0 in

pa >
(38) or such that e/¢gc - ¢ = 0 in (39), Abel gets
e 1" [ e oxdx e / e ida
el | Y
(a — x)pa

wa x—a “0)

—fagr' g
e aP da /
=27 / : / Ppx - xP 2y
Z,B(p) e f ‘da / e pxdx
(a + a(P))(pa x + a®
+3 03 prs® e 'da [ eMxdx
s (a + S(P))u([’)fp/+2(pa (x + g(ﬂ))P,
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and
e 14 [ ePox.dx P e fda
— —eex Y | ———— 41
pa xX—a (a—x)pa - Ya
fa,p' d
_ZZ¢(p,p)/e — /ef“‘gox-x"dx
pa - Ya

when f is a polynomial; the integrals with respect to a must be taken from a value

. ya . .
Abel gives special cases of these formulae, for instance when ¢ is the constant 1;
if more-over fx = x”, one has

_a / e dx o / e "da
e —e
xX—a a—x
=n (/ e d"2da - /exndx + / e a"3da - / e xdx + . ..
+ /e“nda . / exnx"_zdx) .
When fx = 0, (40) gives
/ da 1 pxdx
x| ———— = —
(a—x)pa @a) x—a
da xdx da xdx
o e [P
(a + o)pa X +ao (a+ o)pa X+ o
—i—ﬂ(”) / da . / oxdx
(a+ a™)pa X+ am

and (41) L de —x-Yx m =22 ¢(p, p)fjjgfji‘, [ ox - xPdx. If,
in this last formula B =p8 = = "W = m, as ox = (WYX)", o(p, p) =
(p+1+ m(p + p/ + 2kt ) where k9 is the coefficient of x/ in ¥x, so

(wx)mdx _ m+l/ da
<wa>m / A v D0ar T

=Nk (1t mp + p +2))/ W )m+1 /(Wx)m Pz,

equality which reduces to

r/( /»/ (a—x)x/W @

/ "da xPdx
_ _ — pHktr+2) a?
> ZZ(‘” P) Jua | e

when m = —% and this gives an extension to hyperelliptic integrals of Legen-
B _ n n dx
dre’s formula. If, for example Yx = 1 + ax”, one has +/1 + aa f P
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’ a/a x"_’/_zx :
—«/l—l—ax"fw_x)dﬁ:%Z(n—Zp—Df Lda_ . [xtT_dr The ellip-

1+aa” T+ox
tic case corresponds to Yx = (I — x?)(1 — ax?) and leads to

dx
1 —a2) (1 — ad?
V(1 = a?)( M)/@+@Jﬂimu_wa

da
—J(1 = x)(1 — ax?
VI =21 —ax )/ (a+x)y1—a®)(1 — ada?)

da
_a/\/(l—az)(l—(xaz)./\/(1—x2)(1—ax2)
a*da

JO - —add) / JA =1 —axd)

or, with x = sing and a = sin ¥,

cos Yry/1 — a sin? / dy
(sing + siny)y/1 — asin? @

- ay
—cospy/1 —asm2<p/
(siny + sin@)/1 — asin? ¢
/‘ sin® pdg
=«
\/l—asmz \/1—ozsm2g0

sin® Ydyr /

V1 —asin?y \/1—asin2(p

The formula (40) with fx = x gives
e [ e*oxdx / e ?da Zﬂ(p) e “da / e*pxdx
pa X—a (a —x)pa (a+ aP)pa X+ o
that is, for px = +/x%2 — 1:

\/—/ e ¢ / dx/x2 =1

(a—x)\/az—l «/az—l X —a
1 e “da de/x2 —1
__/(a+1)«/a2—1. Xt 1
1 e “da dxv/x? — 1
‘/w_DJETT' x—1

Let us turn back to the formula (41) with 8 = g/ = ... = B = m, but with f
any polynomial:
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—fa fx m —fa
e /e (¥x)"dx —ef“"(wx)’”“/ e /da
a (a

Warr Jox= — 1) (yay™!
=D Y+ P +22y P L (p+ L+ m(p + p + 2K PH)
—fa,p

that is
ef dx e f”da
BRAZ) R S e

=22 ((p +p + 2))/(”“”“) + E(p - p’)k“’*"'“))

/
e 1a’ da

(Ya)ymt1 '/efx(wx)mxpdx

when m = 1' if moreover fx = x and Yx = 1 — x?, this gives e"%/1 —a?

— e %da sin gmgﬂd‘ﬂ — sinp
xf(x a)m V1 —x f(a EWr or cos eV [ cmc = cos e

[+ l// +Sm¢ (integrals from ¢, ¥ = 7).
Abel also applies these formulae to definite integrals: the formula (40) with f
polynomial gives

X"

X oxd
/e pxdx 43)

X —a

X/

/
X/

—fagr' g ,

_ fa / (pip+2) [ € Ta"da / f
= e/pa +p +2 — | e oxdx
@ E E (p+p+2y f va ®

a x/

—fag, *oxd
e /da el pxdx
—e‘fa(paE :ﬁ(p)/ ) / o
(a + aP)pa x+alr

a/

when x’, x” annihilate e/

" x//

pxdx _ » / da . /‘ pxdx
/x—a N gaaZﬂ (a + a'P)ga x4+ o

x! a X

and for px = 1 f eﬁd" =TSN (p+p A2y PHD (e g da - [ el xPdx.
a/

X/

The formula (43), with % = 0 gives
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a’ W

X
Zﬁ(") e fda / e pxdx
(a + a([’))(pa x + a(P)

!

a X

" "

o [ e Fea? d
:ZZ(P+P/+2))/(”+”+2)/76 = -/efxwxdx,
wa

/! 3

a X

"

a// X
: p) e dq . K oxdx _ _ _
for instance ) 8 f/ Py f, 25 = O0for fx =kxand x = 1,
a X

a’ X!

Y (p+p 2y / e fa da - / efxPdx = 0.

! !

a X

Using now (41) with x’, x” annihilating e/*gx - ¥x, Abel gets

!
.X, x//

e pxdx e P da
_ ol Fox - xPd
/ T, ¢ <pa2 E <p(p,p)f o fe ox - xPdx

/

X

and, when 8 = ' = ... = B =m,

/
X"

T e* (Yx)"dx a m [ e’ da o n
[ IR et Y Y ot ) / e [ et raras,

! /

X X

(44)

For fx = 0 and m = —3, this gives

x"

/
a’ da xPdx

d 1
— _ /k(p+p+2) . -
[u—a)m 7 =) | Ta ] o

expressing the periods of an hyperelliptic integral of the third kind by means of the
periods of the integrals of the first two kinds; in the elliptic case,

Yx = (1 — x> (1 — ax?),

one has
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[ dx
1 — a2 (1 — ad?
V= a)( aa)//(x—a)\/(l—ﬁ)(l—axz)

—af da / x“dx
VA= —aad) A= - aa?)

—a/ a / dx
Vad—a)(1—aa®) S (01— —ax?)

with x’, x” and a’ = +1 or :I:\/g.
From (44) with x = 1 —x?",x’ = —1,x = l and @’ = 1, Abel deduces

1

/ dx
(x —a)(1 — x>mm

142
r(s)

I'—-m+1) / 2n=2p=2 4
F(=m+14 22y d=ani

= n(l —ayn

Z(2p+1—2mn)

for m > 0. If, for example m = % and n = 3, this gives

1

/ dx _ 2 Jr F(%)/ a*da

J (x —a)v/1 —x® 3«/1—a6F(%)1 V1 —ab
2T F(%)/ da
3@“%)1 V1—adb

Now if ¢ wa” =0,>Y o(p, p)f e (;Z“\;ad“ . fefxgox xPdx = 0 for instance,

when gx = (x+a)f (x+a) .. (x+a<">)ﬂ“’ and Ya = (a+a)' Pa+a) .
(a + oc(”))l’ﬂ("), with —1 < B8, 8, ..., ™ < 0, one has

//

X/

ifx' = —a?, x" = —a?),d = —a@ anda’ = —a¥). When B =f = ... =
B = 1 , denoting by ¢x a polynomial of degree n, with roots «, ', &”, ... and by
F(p, x) the integral f X d* , this relation becomes
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SN (p— PP E(p ) F(p. o)

+D 2 (= PRI E(p, Y F(p o)
=" (p— kP F(p ) F(p. . a")

+3 3 (p— PP F(p. oY F(p ),

and, px = (1 —x?)(1—c?x?) (elliptic case), ¢ = 1,o' = —1,0” = Land " = —1,
we find
1 1
FWHE|l-|=EMWLF|-]),
C C
where Fx = [ ——%&—_ and Ex = [ ——24&
0 A 1=x?)(1-c2x?) 0 A (1=x)(1-c2x%)

A short posthumous paper Sur une propriété remarquable d’une classe tres
étendue de fonctions transcendantes (Euvres, t. 11, p. 43—46, mem. VIII) contains
some of the same formulae. Abel starts from a differential equation 0 = sy + t%,

where t = gox and s = fx are polynomials; then, for r = "’/;‘%afx - (xf’; n =
- (xf‘;)z - fo ~ + R, with
R:l(p//a—f/a—F l(p///a_lf//a (x_a)
2 3 2
+ l " 1 fm ( )2 +
—¢"a——f"a)(x—a e
2.4Y 723
and y = ¥x solution of the differential equation, one has
d
frydx _ yox or yox _ _(pa_z _ fa -z +/Rydx,
xX—a xX—a da
where z = [ = de .If z = pia, this equality becomes [ Rydx — £== ‘/’X =ga- 1/[(1

and we have

1 Yxdx R de
P=val x—a " “’xfm_x)w 9 //wa v

=D (1 + Dtmrnsz = Busnt) x"yxd,

where o, (resp. fx) is the coefficient of x* in @x (resp. fx); the origin of integration
in x (resp. in a) must annihilate ¥x - px (resp. #). Note that, up to a constant factor,

Yx =e ] * has the form W where pisa rational function (not the

preceding p !) and 0 < m,my,... < 1. When ¢x =
B = 3(m + Dy and we find the formula (42).

«/¢7 fx——gox—Oand
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The following paper in the second volume of Abel’s Works (p. 47-54, mem. IX)
extends this theory to the case of a linear differential equation of order m with
polynomial coefficients:

dy d"y
0= — 4+ .t s, 45
SY+Sldx+ + 5 I (45)
sx = @x(x) polynomial. Abel looks for a function r such that
dy dm72 dmfly
frydx:vy+vld +Um2dm2+smdm_]’
with ¢ a given function, taken equal to ﬁ He finds that v, = s,t — ‘Z)—)’f for
0<pu<m-—1(withv_y = —rand v,—; = 1ts,),sothat v,_; = s, — d(xZ;m +
dz(s;l,+2t) d
a2 . an
d(sit) dz(szt) d’”(smt)
—r = st — . n"
ree dx + dx? + =D
Now s,t = (i"_(z) + Ry, where R, is polynomial in x, so
= ) Fod T+ )
x—a (x—a)? (x a)‘ (x —aym*! ’
with p = R — % +... .+ (D" d";,ff. Thus the integral z = f Vd““ satisfies a dif-
ferential equation ¢a - z + ¢a - % + ...+ ppa- % = —x - f,oydx, where

_ dy dm72y dmfly ; .
X =y +vig +Vn2 sy +Sn et and x’ = x — xo (where xg is the value of

x at the origin of integration); Abel writes the solution of this equation in terms of
a fundamental system of solutions of (45).

In the second part of the paper, Abel Wishes to find coefficients oy, an, ... , ot
depending on a such that z = [ (;‘T‘a + o a)z +...+ (I;rf:)’fn )ydx satisfy a differ-

ential equation of the form Bz + y% = x + [ pydx; he writes induction relations
between the «,, and, supposing —g = ¢ constant, a differential equation to deter-
mine y.

The first article on Abelian integrals published by Abel in Crelle’s Journal
(1826, Euvres, t. 1, p. 104—144) is devoted to the search for differential forms sz,

with p and R polynomials, such that their integrals have the form log 2 +q£ =7z,

with p, ¢ polynomials. As dz = W, one must have p = 3 with
M = pqf+2 (pj—z - q‘j—f) Rand N = p?—g>R. It follows that gp = 292 —p%\;
and PM must be polynomials. If

=@ +a)"(x+a)™ ... (x+a)™,

dN _ m mj
Ndx_x+a+x+a1 +..

x+a)x+a) - (x+a).
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Hence p = (x + a)(x +a;) -+ - (x + a,) p1 and
(X +a)"(x+a)™ - (x +a,)"™ = pi(x +a)*(x +a)* - (x +a,)* — ¢°R

which shows that m = m| = ... = m,, = 1 if p and g are relatively prime (R is
supposed to be square free) and that R = (x + a)(x +a;)--- (x + a,)R; = NR;.
Now pi, ¢, N and R, are determined by the equation pN — ¢°R; = 1 and so
p=pra+2(plt —q) R

Abel studies pIN — ¢’ R, = 1, or more generally pN — g>R; = v (where v is
polynomial of degree less than the mean of the degrees of N and R ), as a Diophantine
equation in the ring of polynomials. The first observation is that Np? and R;¢* must
have the same degree and so SR = §(NR|) = 2(6q —S§p1 +5R;) (where § designates
the degree) is an even number, so we can put SN = n —m and 6R; = n + m. By
Euclidian division Ry = Nt + ¢/, with 8¢ = 2m and 8t < n — m. Using the method
of indeterminate coefficients, Abel shows that there exist #; and #{ such that §1; < m
andt = 17 +1;. The equation now becomes (p? —g*t?)N —q>s = v, with s = Nt| +1'

2
and shows that (%) and t12 differ by a rational fraction of degree less than §t;, and

as a consequence the polynomial part of % is +1y, say t;. Thus p; = t;q + B with

2
— ) =AY iR = RN =

N
q 1N
BT s
4 an ~— have the same polynomial part 2ix and ¢ = 28 + B; with §8; < 4.
Now the Diophantine equation becomes

siB> = 2riBB1 —spi = v

where 51 = N +4uty N — 4sp” and ry = 2us — t;N; as 7 + ss; = R, 8ry = n and
8s, 8s1 < n.

8B < 8q and one can verify that (%

with 81" < 8r, we see as before that and £ have the same polynomial part, so

r+ti N
d s

2 2
i i L _ny — (1 s v i
Our equation may be written ( 5 Sl) = <s1) + 5+ Yy which shows
that % - :—i and % have the same polynomial part up to sign. Writing w; for the

polynomial part of %, the polynomial part of ﬂﬁl is 2uy and B = 28141 + By with
8B < 8B1. The equation can now be rewritten sz,312 —2rB1Br — 51 ﬁ% = —v, where
rp = 2uys; —rp and s, = 5 + 4y — 4S1M%, from which it is easy to see that
8ry = 8r; > &s,. Continuing in this way, we obtain

Snﬂ371 — 2rnﬁ,,,1ﬁ,, — Sn71ﬁ3 — (_l)n—lv

with 8,1 = 2u,B, + But1, M, integral part of Z_:’ In = 2{ly—18,—1 — rp—1 and
Sp = Sp—2 +4r,_1n_1 — 4sn_1;¢%71; aséf > 8By > ... > 8B, > ..., thereis an
m such that g, = 0, giving the equation sm,B,znfl = (=1)""'v. The sequence (By) is
determined by the Euclidian algorithm and §,,—; is the g.c.d. of B and B, and so 1
if p and g are relatively prime and v = (—1)""'s,,,.

In the initial problem, we had v = 1, so we must take s,, constant. As the s; are
of degree k, this gives n — 1 conditions on the 2n coefficients of R and N, once the
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. . d
index m is chosen. Thus % = tﬁ—ﬁ andp = (p1 o T2N ”‘) 1 q,

.. .
21+ .+2V-m—l

of degree n — 1.
Abel adds some observations. The first is that one may put N = 1 in the problem,
for

p+qvR 1 pPPN+@R +2pigvR 1. p+4q VR
log———==-1o = _Jog 2TV

g g
p—qvR 2 T pPIN+q*R —2pigvR 2 T p —g VR

with p/ = pzN +¢?R; and ¢’ = 2p,q.Inthat case, the equation takes the Pell-Fermat
form p? —¢*R=1and p = 2 d” . The second is that, if “k is the k-th convergent
of the continued fraction for %, N ,BkR 1=(— 1)" lsk and S0, putting

Zk = dga/N + /R and  z, = a/N — B/ Ry,

we etz—’,‘zr"“ﬁ =1 Lastly,
& %k rk\/—kl Y

piv'N +qJ/Ry o 1N+ VR, 1 rv/N++R

log og + log
VN —gJR: nVN— R VN - VR
ru/N + VR
+...+log ———.
rmv'N — /R
Abel also shows that
1
pdx = Z(EtldN + Ndt; +dri+ ... +dr, — pds — ... — (yp_1ds,—1).
2 R
As (%) = +2—N’ one sees that the continued fraction for ” L is obtained from
that for ,/ %.Letus suppose that N = 1,sothats; = rand /R = r+7.. An
2u+ﬁ+ :
easy computation shows that 72, + Sy Sm—1 = 12| + Sy—1Sm—2 = ... = I} + 55 =
R = r*+s. If 5, = a constant, we have rj; — r* = s — asu41 and, since

8Fms1 = Or > 88, 88yt 1, this implies 7, = r and s, 4] = i This shows that the

polynomial part 4+ of "’+1 is equal to ap and s,,4> = asy, ry42 = r; and so

on, in general we have ry,1, = 11, 'mn = I'n, Smtn = a=V", | and Wmtn =
n—1 . . . . . . . . .

a“=D"" 1, _1. This shows that the continued fraction is periodic with partial quotients

ry20, 201, .., “1 2apu, 2 Z Dapu, 2’”, o2, 2r, 2, .y ifm = 2k — 11is odd,

k . .
sk = a" Vg and @ = 1. Conversely, one sees that if \/R has a continued

fraction of the preceding form, s,, = a. Abel may conclude by a criterion for the

existence of a polynomial p such that f Ldx — Jog y+§ with y rational: ./R must
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be of the form r + L
2p+
2 +'. + 1
! 241+ I T
2u+ I
2r+ T
2u+
2;1.1+.
1
andthen y=r+ :
2n+
2ui+ e+ 1 T
n1+ I
2;1.+$

Conversely, Abel proves that s = sx_p implies ry = ry—1, g = k-2, k41 =
k-2, Sk+1 = Sk—3 etc. and generally ryy, = rk—n_1, Mhksn = Mk—n—2> Skn = Sk—n—2}
forn = k—1, this gives sy = s_1 = 1.If s = cse—y, hefinds pug = Ly, ey =

Tk—1, Skl = %sk_z, e, Sk = D" The integral found is
1
/ —(dr+dri+...+dri_1 + Edrk — uds — pydsy — ... — g—1dsi_1)
r—+vR ri—+R r-1—vR 2 re — /R
when m = 2k and
1
/ —=(dr +dri+ ... +driy — pds — puidsy — ... — podsgo — El/«kfldskfl)
R R _ R
=logr+\/—+logﬂ+...+logM
r — \/E ry — \/E Fk—1 — \/E

whenm = 2k — 1.

In the elliptic case, where R is of degree 4 = 2n, n = 2 and the s,, are of
degree 1, so there is only one condition to write in order to have s, = const.
If R = (x> +ax + b)? +ex, we have r = x2+ax + b, s = ex, W= ta

e

and then r; = x2 +ax —b,s; = %x+ % + L = gx — 12% and s, =
(% + 12%) xX— % (% + 1222 — b). In order to make s; constant, we have only to
— Grta)dy  _ |og X2tax+V/R 2 2

putb = 0and we find that | N log 44 J_,w1th R = (x*4ax)*+ex.
In order to make s, constant, we pute = —4ab, R = (x2 4+ ax + b)? — 4abx and find

/' (4x + a)dx 1 24+ax+b+ R

= Og
V(2 + ax + b)? — 4abx 24ax+b—+R

1 x24+ax—b++R
+—log .
2 "xX24+ax—b-—+R

Abel also computes the case in which s3 is constant, which is given by
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e = —2b(a+ va?+ 4b)

and

/ (5x + 3 F Va2 + 4b)dx ng2+ax+b+ﬁ
2
\/(x2+ax+b)2—2bx(a:|:«/a2+4b) a2 tax+b— R

i 2 4+ax—b++R
o ,
gx2+ax—b—\/ﬁ

and the case where s4 is constant, which leads to e = —b(3a £+ «/W) and
/ (6x + 3a — 3+/a? + 8b)dx
JO2 + ax + 5 — bGa + Va? + 8h)x
x2+ax+b+\/ﬁ x2+ax—b+\/ﬁ
x2+ax+b—\/E+ ngz—{-ax—b—\/E
+110gx2+ax+ ia(a—x/m%i-\/ﬁ.
2 x2+ax+%a(a—\/M)—\/E

At the end of the memoir, Abel states a theorem according to which, whenever

an integral f p and R polynomials, may be expressed by logarithms, it is always

in the form A log £ “’\‘? with A constant, p and g polynomials.

Chebyshev (1860) and Zolotarev (1872) studied the same problem in the elliptic
case looking for arithmetical conditions on the coefficients of R, these latter supposed
to be integers.

The first text written by Abel on elliptic functions (between 1823 and 1825), with
the title Théorie des transcendantes elliptiques ((Euvres, t. 11, p. 87-188), also deals
with this problem but it was not published by Abel. In the first chapter, Abel studies
the conditions under which an elhptlc integral f Pdx " \ith P a rational function

= log

and R = o + Bx + yx? + 8x% + ex*, is an algebralc function. At first taking P
polynomial, he observes that this algebraic function must be rational in x and /R,
so of the form Q'+ Q./R with Q" and Q rational; since dQ’ is rational, we may write
d(Q/R) = P d" . The function Q is a polynomial otherwise its poles would remain
as poles in the dlfferentlal. 0= f0)+ f(Hx+...+ f(m)x" and d(Q/R) = Sjl,
with

g

S = Rd—+ Q——¢(0)+<p(1)x+ -4 p(m)x™.

This gives
1
pp=@E+DLfp+D...a+ <p+—> fp)-B+pfip—1) -y

+<p——>f(p 2)-5+(p—-Df(p—3)-¢
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xdx

and m = n+3. Abel draws the conclusion that the integrals f
as linear combinations of those with 0 < m < 2 and an algebraic function; but

may be expressed

f % X and v d" are independent when the reductions admitted involve only

xdx

algebralc functlons The reduction of f is given by a system of m — 2 linear

equations ¢(p) = 0for3 < p < m — 1 @(m) = —1 to determine the f(p)
(0 < p < m — 3) and the formulae

1 3

¢O) = f()- a4 Sf0)- B, o(1) =2/2) - a+ S A1) - B+ fO) -,
5 3

¢(2) =3f0)-a+5fQ@)-+2f)-y+5/0)-4.

For instance

x*dx (5B la dx " S5y5 18 xdx

JR \24g2 3¢ JR \12& 2¢ JR
58 2y\ [y (58 11

Sofh) 2= (22 - -x ) VR

+<882 8) VR (1282 38x>\/—

When the values found for ¢(0), ¢(1) and ¢(2) are 0, the integral is alge-

.. . _ 12548 25 83 1582 .2 3 4 dx
braic; for instance, when R = 356 3 + 35 e X+ gox+ ox” + ex”, f R =

534 11
—<m—z—§;x)ﬁ-

In a completely analogous manner, Abel reduces f

—__ to a linear combi-
)m f

nation of f f xdx f 2"“‘ S o a) f and an algebralc function Q0/R, O having

only one pole in a: Q W(U + (xW(fz))Z +...+ (;bi'z)ml,)l. Indeed d(Q+/R) = S %
with

x(D + x(2) x(m)
(x —a)? (x—aym’

(0) = (EaS + 8a2> w(l) — 5(8 + 4as)y(2) — ey (3),

S = ¢(0) + p(1)x + p(2)x* +

1
p(l) = Z0y(D).  ¢@2) =ev(D)

and x(p) = —a'(p— DY (p—1)—B'(p— z)w(p) Y ptﬁ(p+l) §'(p+ 2)w(p+2)
—&'(p+DY(p+3);here o = a+pa+ya®+8a’+ea*, B = /3+2ya+38a +4ea’,
Y =y +38a+6ea*, 8 =8+4saand ¢ = ¢, sothat R = o + p/(x —a) +
Y (x —a)> + 8 (x —a)® + & (x — a)*. In order to get the announced reduction, we
determine the ¥(p) by a linear system y(p) =0for2 < p <m — 1, x(m) = —
then ¢(0), (1), ¢(2) are given by the preceding formulae and

1 3
x() = —Eﬂ’l/f(l) —Y'v@ - 55/1ﬂ(3) — 26y (4).

For instance,
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/ dx B _8612 + %Sa dx n i xdx £ x2dx
(xr—a2J/fx fa Vix o 2fa \/ﬁ Jx
1 fa dx Jfx 46)

2fa) G—aSfx G—-afa

where R = fx. This reduction does not work if &' = fa = 0, which gives x(m) = 0
and in that case, we must take Q with a pole of order m in a and we see that

I W is reducible to f f 2 and | Xj%" even form = I:
/ dx  2ea’+ab dr ¢ xdx+28/x2dx 2 VR
@x-aWR  fa VR fal VR fal JR fax—a
(47)

The next task for Abel is to find the possible relations between integrals of the
form

dx
/ (x —b)VR
It is easy to see that the only possible relations have the form
<p(0)f e + w(l)/ o
(x —a)f (x —a')f
+¢(2) / — VR +¢3) / c—anJR
_J_( +A/+A/+Am),

x—a x—a x—a’ x-—a"

where a,d’,a”,a” are the roots of R. Using the preceding reduction and the

fact that f N Mt and [ xz‘g‘ are independent, Abel finds A = 2%)), A =

20,4 = 2;”/(2), A" = -2 AQea® +abd) + A'(2ea” +a'8) + A" ea” +
a’8)+ A" (2ea"* +d"8) =0and A+ A + A" + A” = 0;itis possible to choose

A”" = 0 and this gives the relation

0 e [ e [
()/ p(1) _a%/_ ¢(2) —a”)\/_
=«/ﬁ( - A T )

x—a x—a x-—a’

with
1
(p(o) — E(a _ a/)(a _ a//)(a _ a///)(a/ _ a//)(a/ + a// —a— a///)7
1
(0(1) — E(a/ _ Cl) ((1, _ a//)(a a///) ((l Cl) ((l + a// _ Cl/ _ a///)’

1
(p(z) — E(a// _ a)(a// _ a/)(a// _ a///)(a _ a/)(a _"_ a/ _ a// _ a///)'
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Abel looks for linear relations between

/ dx @ E and / dx /‘ X )
VR’ VR VR (x — VR’ (x —a)VR’

using (46), he finds [ % = a-d"a—d") 4 @—d)d~d") dx _ and

a"+ad"—a—d G— a)f P — (xfa’)\/ﬁ
/ x2dx n S8 [ xdx
vR 2J VR

_d@—-a—-da"—-d") fla dx
2 —a)a+a —a' —a”) (x —a)vR
ald —a—ad" —ad") - fld dx
+2(a —a)a+a —a" —a")) (x—a)VR
VR dd—-a—-d —-d") ala—d —d —d")
(a—a/)(a+a/—a”—a/”)( Xx—a B x—a )

When a + a’ = a” + a”, these relations loose their sense and give f ) i

f dx — 2R

G—a)WR _ @=a@—d)G—aG-a) . _ _ o
In the second chapter of his memoir, Abel studies the integration of elliptic

integrals by logarithmic functions. Such a function must be of the form

T = Alog(P + Q/R) + A'log(P' + Q' /R) + ... + A™ log(P™ 4+ Q™ /R)

with P, Q, P’, Q', ... polynomials and A, A’, ... constant, or, subtracting from dT
P+0OVR / P'+0'VR
. Qf—i—AlogP, Qf+

dp dN
of terms of the form £ - % with M = AN"XT, N = P2— QZR; the fraction %

arational differential 7" = A log . Then dT’ is a sum

N
has only poles of order 1, these poles are not roots of R and it is easy to see that its

polynomial part is of degree < 1. Finally

T_k/_+k//de dix_i_ +L(U)/‘d7x
x—awWR (x —a™)/R’
(48)

and f z d" cannot be reduced to other integrals by means of logarithms.

Let us suppose that 7’ contains r + 1 logarithmic terms; looking at the degrees
of P, Q, P/, Q', ... and at the corresponding number of indeterminate coefficients
in T’, Abel sees that the minimum value of v is 2 and that » may be taken equal to 0.
Moreover, one may take

P=[+[x+/[x

of degree 2, O = 1 and N of degree 2; then f”’ = /e, f/ = 5°= and f =

é‘
k(O —dey)+2K op — _
20K —ack) /e .Fork =0and k" = 1, one has
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dx dx
(G+H«/—)/ +(G—H«/?)/7
«/— (x —vVK)VR (x +vVEK)vVR
N 1 log §ﬁ+%ﬁx+ﬁx2+\/§
25 BT fet it Jorl — VR
_ 4a82£+ﬂ83+4ﬁ282—4ﬁy68 _ 4e sﬁz—aﬁz
where G = — 2(84+8p8s2 —4y52¢) 7’ H= 4s’ - 68 4yse—8Be2—53 "
It is possible to have N of degree 1 when (4ey — 82)2 + 48%(4ey — 32) —
2 3 _ 0 _ 4dey-& xdx
32p8e* — 64’ = 0; then f = === and [ = — ud) [ (x+u)f
e +—x+ﬁx +VR
e _ dey-8? _ 3
3\/—10gm WhereM/— e and//,——z—e.

Abel finds another reduction, writing R = (p + gx + rx*)(p' +¢'x + x%), P =
f(p' +¢'x + x*) and Q = 1 and choosing f such that

= (2 =00 +q'x + ) - a);
then % =1+ L—L with

pq' —qp’ + (rq' — q)a? _q—4q'f?

L= . .
(rq" — q)a 2(f2 =)

This leads to the equation f* (q’2 —4p)—f?(2qq'—4p—4p'r)+q*—4pr = Oand

rds F+q )+ R =L
to the relation | x="L S/ = a)f + Alog g x4 —VR® where A = 7.

Another formula is found by supposing N = k(x — a)*; then

11 1 i

(p+p —p" = p"a>=2pp = p'P"a+pp "+ ") = p'p"(p+p) =0,

where p, p/, p”, p"’ are the roots of R. In that case, % =1— L—, where
2(f+af +a*f") o
S Y f=~pp'p'p" +kat,
, p+p/+p//+p///+4ka " \/—
= — N = 1 + k
! 2V 1 +k
(p+p —p"—p")?
and k = Gomom aa0t ) S
dx
Va=p&x—=p)x—pHx—p")

dx
(x —a)/(x = p)(x = p)x — p")(x = p”)
fHFx+ 3+ V= p) = pHlxe = pHx = p")
[+ fx+ 32 =& =pa—pHx—pH—p7)

+Alog
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with A = 1 . All this work is inspired by Legendre’s reduction
2/ (r+1/=20)(p+p"~2a)
of elliptic integrals to canonical forms as it is presented in the Exercices de Calcul

intégral but Abel’s study is deeper and more general for he investigates all the
possible relations between such integrals and proves the independance of the three
canonical kinds.

Abel also studies the general case, where 4 = ffni]i::itz:ﬁ*f, if Q is of
degree n, P must be of degree n 4+ 2 and m < 2n + 4 which is the degree of N.
With the notations R = ¢x, P = Fx, Q = fx,a,d’,...,a" Y roots of N (with
multiplicities ., 1/, ... , 1w~ 1), one has

FaV =+ faJgah (0 <j<m—1),

whence, by successive derivations, a linear system to determine the coefficients of
P and Q. Then x™ + k"=Dxm=1 4 4k takes in " the value +A\/@a'? - ya'?,
where

dN
Yx=x—a)x—d)... (x — a(m’”)ﬁ;
X
this gives a linear system to get k, k', ... in function of A, a, d’, ... For instance,
whenpu=p' =...=pu"Y =1,m=2n+4=4if Q =1 and Abel finds, for
the coefficients of P,
a/a//a/// aa//a///
— = l A + i/ RV a/
! (a—a)a—a")(a—a") ¢ (a —a)d —a")(a —a”) ¢
aa/a/// aa/a//
+l-// a’ + i / ,,,’
(a//_a)(a//_a/)(a//_a///) (p (a///_a)(a///_a/)(a///_a//) (pa
v i va i’ (,061/ i’ goan
P = @—oa-—a T @—ow-a) T @—aw-ay
ivea i'ed
f/ = - - —(a+ a’)f”,
a—a a—a
where i,i’,i"”,i"” are equal to £1, and A = —(a+a,+a,,+1a,,,)f,,+2f,. When m = 2,

Q0 =1and P> — R = C(x —a)(x —d")3, he finds
_ 1 z(pa/ . (p//a/ _ (¢/a/)2

f//

8 pa'/pa’
fle QD/(J, _Ci/z(pa/.(p//a/_((p/a/)z

2Jpd 4 pa' J/pa '
f:\/(p__a/ 90/61/ a_ﬂz(pa/.(p//a/_((p/a/y

2, /pa’ 8 pa' /ead
1

T (@+3a)fr+2f
/)2

and a, d’ related by \/@a - /oa' = ga' + L(a —d)g'd' + §(a — a/)ZW
When P2 — R = C(x — a)*(x — a')?,
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f// 1 gp/a + 1 (p/a/
4 (a—-d)Jya 4 (a —a)Jod’
= 1 adya n 1 ag'd
2(@—a)/ea 2 (a —a)«/tpa/’
7 1 ad  ¢'a 1 ad  ¢'d va — a«/goa
4a—a Joa 4a’—a«/<pa’ a—da
A 2
- yla 4+ 24
Vea @d

anda a/ re]ated by (p_"_p/_"_p// +p///)aa/ _ (pp/ _ p//p///)(a+a/) +pp/(p//+p///)
p'p"(p+ p) = 0, where p, p/, p”, p"” are the roots of R. So fj—i =

-/ <2bf<2b"/> + Alog P with b = —2 R gy o SRRy
x—a)(x—a \/rp_x P—Jox> Wﬂ
«@ \/«7 «/ﬁ Jod

athirdcase P2— R=C(x — p)(x —a)(x —a’)?>and P = (x — p)(f + f'x) and &’
is function of a.

The last case considered by Abel is that in which m = 1. Here P> — Q’R =
Clx —a)™** and ¥ = S with k = —a — pA./ga. The coefficients of P and Q
are determined by a linear system and then a is given by an algebraic equation; this
leads to

f dx _ 1 dx 1 10gP+Q«/F
x—aWR nAJpa) VR nJga " P—QVR

Abel observes that the equation P> — Q’R = C(x — a)*"** is equivalent to
P?—Q"R = C,where F(x—a) = (x—a)"**P' (1), fx—a) = (x—a)" Q' (1)
and p(x —a) = (x —a)*R’ (L.

As we know, the same equation is met in the problem to express
P+QVR.

(k+x)dx
J b

a logarithm Alog —oVE’ here 5 = X + k, so N is constant and may be taken
as 1. The conditions of the problem are x +k =2A 55 , 1 = P2 — OQ?R; the first
method proposed by Abel to determine P = f + f'x + ...+ fO™x"* 2 and Q =
e+ e'x+ ...+ e™x"is that of indeterminate coefﬁcients. The first condition gives
n (n) . .
A= (2n+i();(” o (n+§): Gl and the second gives a system of 2n 4 5 equations
between the 2n + 4 coefficients e'?, f(P): f2 —wet=1,..., f("”)2 —ge™? =0,

The compatibility of this system imposes a relation between the coefficients «, 8, y, §
and ¢ of R; for instance, when n = 0, sothat Q =eand P = f + f'x + f”x>, one
has

2ff = B = [ +2ff" = y@ =2f f" =5 =0,
/A NG g 8 = Bye = 5
whence f = m7 f - 2\/52327(:(682’ f - \/;3287(152’ e = \/ﬁngatSZ and

— 28 _ 3
J/ g—i_ SA—4[7k E.
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But it is possible to get a linear system for the coefficients e'”, f(: if

Fy _ fyn+2 +f/ n+1 . +f(l’l+2)’
fy:gy +e/yn 1+“'+€(n)
and @y =ay* + By> + 2 + 8y +e,

the second condition is (Fy)?> — (fy)>¢y = y*"** and it gives Fy = fy - /gy
when y = 0. The system is obtained by differentiating 2n + 3 times this relation at
y =0. Whenn = 0 one finds f”" =ce, f' = (e, f = C—//e 0 = ¢, where ¢ =

d];;/f y=0 and y = —|— 2?’3 as above; when n = 1, the system is 0 = 2¢' 4+ ¢

O — 4C/// + //N%, O — SCH// + CH/N@ WhCIICG

//e

/ //// 2C// /. 2C/c///// _ SC//C//// _ O

Without restricting the generality, we may take ¢ = 1 and f = —o«; the preceding
equations then give § = 2, y = —3 and finally

xdx
VXt + 23+ 32 —ax +a
1. P 432 —2-¢+@+2Vx*+20° -3 —ax +a

0 .
6 gx3—|—3x2—2—%—(x+2)«/x4+2x3—3x2—ax+a

(49)

Abel proposes another way to study the equation P> — Q>R = 1; he writes
it P+1=P?R,P—1= Q?R/, where P’Q' = Q and R'R’ = R. Then
P=1(P°R + Q?R")and2 = P?R — Q”R"; with R = x> + 2qx + p, R" =

x* 4+ 2¢'x + p’ and P’, Q' constant, one finds ¢ = ¢/, P’ = Q' = 2 p =
N

2%+ 4gatp+ 1

% 0= ,,k gand A =1 50

/ (x + g)dx

V(2 +2gx + p) (% + 2gx + p))
1 0g2x2+4qx+p+17'+2\/§.
4 T2 44gx+p+p —2VR

With P/ = 2, Q’—”’” one finds2g =r+m' —m,2q¢' =r+m —m’,

1

p= 5r(3m’ —m) + Emz — Em/z —mm’,
1 1 1

p = Er(3m —m') + Em’z — Emz —mm’,

2

1 1
207 = Er(m/ —m)> + E(m —mYm® — m2m’ —m*m +m”),

where r = ¢ + ¢, and then
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P

2 4+ 2mx + m?) (x> 4+ 2gx + p) — ¢?
s C2 s
X2+ (m +m")x +mm’

2

Q:

1
k= Z(3r—m/—m).

m+m’

If we impose k = 0,7 = "% m =2¢'+q.m' =2q+4q'. p = —¢* — 2qq
and p/ = —¢'* — 2qq’; we have
xdx
/ V& +29x — 4> — 294 (% + 2q'x — ¢”* — 24q")
L (x+q+2q)y/x>+2qx— > =299 + (x+q'+29)vV/ x> +29'x —q'* —2qq'

47 (x+q+29)V 2295 — > —2qq' — (x+q' +29)V > +2q'x—q =299

The second method to study the equation P> — Q>R = 1 is that used by
Abel in his published memoir for the more general case of hyperelliptic integrals:
putting R = r? + s, with r of degree 2 and s of degree 1, the equation becomes
P> — Q%> — Q%s = 1 and it shows that P = Qr + Q, with deg Q| < deg P.
Then Q% +200r — Q% =l or, if r = sv + u, with v of degree 1 and u constant,
Q%+2QQ1u+Qs(2vQ1 — Q) = 1;thus O, = Q—2vQ;ifofdegree < deg Q =n
and

51071 —2r 0102 — 505 = 1,

with sy = 1 4+ 4uv, r; =r —2u,degQ; = n — 1 and deg Q, = n — 2. Iterat-
ing the process, one gets equations sx—1 Q3,1 — 2520 Q20 Q2041 — 52403, = 1,
52041Q30r 1 — 252041 Q204102042 — $200 Q5 = 1, with deg Q) = n — p; this
gives s, Q,Zl = (—=1)"*!, 0, and s, constant. The induction relations to determine
the s,, are

Sm = Sm—2 + 4I/tm,1Um,1, 'm =Tm—-1— 2umfl = SmUm + Up,. (50)

A consequence of these relations is that s,,_1s,, + r,%l = Sm_1Sm_2 + r,%l_l, so that
this quantity does not depend on m and

Sm—1Sm + r,i =551 + r% =r’+s=R: (@28

as s, = L is constant, it is easy to see that ry_; = re, Sux = si_1 D", vy =
v kY and uy_g = —ug_y. Forn = 2a+1and k = o+ 1, this gives o = 1 and
uy = 0;forn =20, uy—1+u, = 0. The Q,, are determined from Q,, by the induction
relations Q,, = 2v,, Q11 + Omao and we see that r, 2v, 2vy, ... , 2v,_; are the
partial quotients of the continued fraction for £, which is obtained by truncating
that for \/R. Putting 7, = x> 4 ax + by, Sy = Con + PmX, Uy = (g + x)PL and
qm = b — b,,, Abel draws from (50) and (51) the relations "



86 C. Houzel

q 2p + (Clp 2C)qm 1 — Y49m— qu 1 Cm—1 - C+(/Im—IQm
" 9z Pt p
and  pupm_1 = 29m;
since u,, = % = %(qu —gm) and g, = a — ;—’;’l, these relations allow

to determine r,, S, U, and v, if we know the ¢g,,, which are determined by an

. . . . 2 2 , '
induction relation starting from ¢ = 0, g; = 21"”%’“ and are rational functions

ofa,b,c, p.
Abel applies this method to the elliptic integral [ ——d____ The condi-

N 2 4ax+p)2+px+c

tion s,, = constant is equivalent to pn = 0 and it leads to ¢, = 0 and ¢, = gx. The
coefficient k is equal to —a + n+2 (% + ;—ll 4+ ...+ ;n 1 ) and the polynomials P

and Q are determined by the continued fraction. When ¢ = 0, Abel finds the results
published in his 1826 paper, using

p(p + 4ab)
= Zb, =
q1 B2
_2b(16b° — p(p + 4ab))
= (p + dab)? ’

4bp(p + 4ab)(p* + 6abp + 8a’b* — 8b%)
(1603 — p(p + 4ab))? '

qs =

From a relation f (”k ) — A'log £/+g \/*C/, Abel deduces

/x—i—k dx —Alo P+ OVR
x+IVvR P oVR

through the change of variable y = +l’ he finds k = [ + k,, = —2—/ and an

algebraic equation to determine / in function of the coefficients of R. Indeed, when
R =0G*4+ay+b?+c+py and R= D>+ c)x* +6x° + yx> + Bx + a),
2ab+ p = (b* +¢)(8 — 4), a> +2b = (b* + ¢)(y — 381 + 61%),

2a = (b* 4 ¢)(B — 291 + 381> — 41°)

and 1 = (B> + c)(oe Bl + yI? — 81 +1*). From this Abel deduces, with — instead of
I, f _ f 1 1 I P+QOVR
(x— l)f ’+’< Qi d)Jat flyProB P—OVR’
proof of (49) when [ + k =00
In the third chapter of the Théorie des transcendantes elliptiques Abel shows
that the periods of an integral of the third kind p = f ) f are combinations of

the periods of the integrals [ j’L f 2 and | "j/%‘. Taking the integral from a value

x = r which annihilates R = fx, dlfferentiating with respect to a and using (46), he
obtains

which gives a new
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] JE 1 [ d
p+ fa, i+— A+ Bx+Cx?)

27T @-fa Vix

where A = —ga® — Sa B = 18 and C = ¢. From this he deduces

pﬁ’ﬁl<mﬁi/ﬁif‘

and the constant is seen to be 0 by making a = r. Thus

e O v

/ f ( 8x + sxz)dx / / ( Sa + ea*)da
Vfa Vix Jfa

which the formula (42) for the case of elliptic integrals. When r’ is another root of

fx, one obtains «/faf = a)«/ﬁ f . f( 5x+sx )dx _ / v /( 8a+sa )da ' And

(A + Bx + Cx?) + constant

f ( 5x+sx )dx f (3 8a+sa2)da

if ¥ is a third root of fx, f i f =

Abel finds new relations between perlods startlng from

P+OVR . P +0OVR
= Alo A'log ————
K og —Q\/E—l_ OgP’—Q’\/ﬁ—i_

—/B+dex+L/ dx Y dx n
B VR (x —a)vR (x —a)v/R

(cf. (48)) which gives, by integrating from r to r':

dx [ L (%Sa—l—eaz)da_'_ L' [ (A8 +ed?)dd

i (Lox + ex?)dx L da_
Vx \/ﬁ x/ﬁ Wr Vid

The end of the Théorie des transcencantes elliptiques (p. 173-188) is devoted

to th f that integral of the third kind [1(n) = dx
o the proof that an integral of the third kin (n) f RIS Ty
may be transformed in a linear combination of the integral of the first kind

F=/[ , some logarithms (or arctangents) of algebraic functions

(1-x2)(1—c2x2)
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and another integral of the third kind I1(n’) with a parameter n’ arbitrarily large

or arbitrarily close to a certain limit, and more generally to the relations between
integrals of the third kind with different parameters. Let us consider s = arctan %E’
with R = (1 — x3)(1 — 2x?) and Q = x(a + bx?); we have ds = %% with
N=Q*+Rand M = %Qi—f — Ri—g. If we impose that N = k(1 +nx?)(14+n1x%)2,
we find that k = 1,b = £n1/n,a = (1 +n)V1+n Fn/n = xn) a/nd

n=x2WT+ntn)We2+n+./n)= f(n). Then L = A+ L 4 _L

1+nx2 1+n x2

with A =2a — (L4 2 )b, L = 2% —aand L' = 2/n — 2a. Thus
V'R 2 -2
o) = —Y™ aretan _Zayn=Qntm) (52)
ny —asy/n ax + bx3 niay/n
2a — 2./n)\/n
+¢H(m) +C
ny —asy/n
b 3
= BF + yIl(n)) + « arctan %
with @ = =Y _ _ o), f = _Eaennmm gy y = QAR _ .,

niFay/n niFay/n niFa/n
It is easy to see that n; > 4n and that y is an increasing function when

both upper signs are chosen in f(n). Thus, iterating the operation, we arrive at
a parameter n, as large as we wish, with «,, equivalent to ﬁ, B remain-
ing between 0 and 1 and lim g8, =0, limy,, = 4. On the contrary, when both
lower signs are chosen, n, decreases and its limit is the root k of the equation

k= Wk+1—/k)(Vk+ 2 — /k). Applying (52) to I1(k), we obtain
_ 2a+3Vk 1 ax — k3x®

S 3+ 3+ k) vR
The formulae n; = —(v/1 +n + /n)(vc* +n — /n) and

ny=—14+n—yn)/+n+ n)

respectively lead to values of n,, between —c? and —c and between —1 and —c. Abel
also studies the case in which #n is negative.

The transformed parameter | is given by an equation of degree 4; inversely, one
has

(k)

(n% — 02)2
n = .
4ni(ny + D(ny +¢?)
When the sequence (n,,) is periodic, the integrals I1(n,,) may be expressed as

combinations of F' and some arctangents.
Abel finds other relations as

Hn) = —ﬂw(m)ﬂ(m) — A F+ ! arctan QJR,

n y(n) pnniy(n) nyr(n) P
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with P, O polynomials such that

VA +n)(c?+n)
v

A constant and n; = x(n) a certain function. When for instance P = 1 + bx? and
Q =ex, x(n) = cle=A/2+m)(1—v/TFn)

An essential discovery gf Abel in the theory of elliptic functions is that these func-
tions, obtained by inverting elliptic integrals, have 2 independent periods in the com-
plex domain. In his posthumous memoir Propriétés remarquables de la fonction y =
@x déterminée par I’équation fydy—dx+/(a — y)(ay — y)(ax — y) ... (a, —y) =0,
fy étant une fonction quelconque de y qui ne devient pas nulle ou infinie lorsque
y = a,a1,a,...,a (Euvres, t. 11, p. 40-42), he shows that the function ¢x,
which is the inverse function of the hyperelliptic integral x = [ LAy \yhere

P2+ 0*R= (141 +nmxH”, yn) =

vy =(a—y)(a;—y)(a—y)...(a, —y), must have each of the numbers 2(« — o)
as period, where ¢, is the values of the integral corresponding to y = ay. Jacobi later
proved (1834) that a regular uniform function of one complex variable cannot have
more than 2 independent periods; thus the inverse function of a hyperelliptic integral
cannot be uniform when m > 4. The inversion problem for hyperelliptic integrals
or more generally for abelian integrals must involve functions of several complex
variable, as Jacobi (1832) discovered through his intertretation of Abel theorem.
Here Abel writes the Taylor series for the function ¢:

<p(x+v)=y+v2Q2+v4Q4+v6Q6+...+\/@(le+v3Q3+v5q5+...)

where the Q; do not have poles at the a;. Thus ¢(a +v) = a + V20 + 004 +
v6Q6 + . .. ¢(a + v) is an even function of v and (2« — v) = @v. In the same way
¢2a; —v) = pv and (2 — 201 4+ v) = @v and so on.

5 Abel Theorem

The most famous of Abel’s results is a remarkable extension of Euler addition
theorem for elliptic integrals. It is known as Abel theorem and gives the corresponding
property for any integral of an algebraic function; such integrals are now called
abelian integrals. This theorem, sent to the french Academy of Sciences by Abel
in 1826 in a long memoir titled Mémoire sur une propriété générale d’une classe
tres-étendue de fonctions transcendantes, is rightly considered as the base of the
following developments in algebraic geometry. Due to the negligence of the french
Academicians, this fundamental memoir was published only in 1841, after the first
edition of Abel’s Work (1839).

In the introduction, Abel gives the following statement:

“When several functions are given of which the derivatives may be roots of the
same algebraic equation, of which all the coefficients are rational functions of the
same variable, one can always express the sum of any number of such functions by
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an algebraic and logarithmic function, provided that a certain number of algebraic
relations be prescribed between the variables of the functions in question.”

He adds that the number of relations does not depend on the number of the
functions, but only on their nature. It is 1 for the elliptic integrals, 2 for the functions
of which the derivatives contains only the square root of a polynmial of degree < 6
as irrationality.

A second statement, which is properly Abel theorem says:

“One may always express the sum of a given number of functions, each of
which is multiplied by a rational number, and of which the variable are arbitrary,
by a similar sum of a determined number of functions, of which the variables are
algebraic functions of the variables of the givent functions.”

The proof of the first statement is short (§ 1-3, p. 146-150). Abel considers an
algebraic equation 0 = po+p1y+pay>+...+p._1Y"" ' +y, = xy with coefficients
polynomials in x; this equation is supposed to be irreducible. He introduces another
polynomial

Oy =qo+qy+qy +...+q. 1y

in x, y, certain coefficients a, a’, d”, . .. of the polynomials qq, g1, ... , ¢" ! being
indeterminates. The resultant r = 0y'8y” ...0y"™ of x and @, where y', y”, ... , y™
are theroots of xy = 0,isapolynomialinzx, a,d’, a”, ..., whichmay be decomposed
in r = FoxFx where Fox and Fx are polynomials in x and Fyx does not depend
ona,a,a’,.... Let x;,xz,...,x, be the roots of Fx = 0 and yi, y2,..., ¥,
the corresponding common roots of the equations yy = 0, fy = 0. The y; are
rational functions of xi, a, a’, a”, . . . by the theory of elimination. Now let f(x, y)dx
be a differential form, with f a rational function of x, y. When Fx = 0, dx =
—‘}—F/jﬁ where F’x is the derivative with respect to x and §Fx the differential with
respect to a, a’, d”’, ... Thus f(xg, y)dx; = —ﬂi’f—;{ik)éka is rational with respect
to xg,a,a’,a”, ... and dv = f(xy, y)dxi + f(x2, y2)dxo + ... + fxy, yu)dx, is
rational with respect to a, a’, a”, ... A consequence is that the function

‘/fUhyOdh4:/fULyﬁ@&+-u41/f0ﬁdmﬁhuzv (53)

is an algebraic and logarithmic function of a, @', a”, . . . Now if there are « indetermi-
nate coefficients a, a’, @”, . .. in 0y, they may be determined by arbitrarily choosing
a couples (x;, y;) of roots of xy = 0 and writing the equations 6y; = 0; the other
yx are then rational functions of x; and the (x;, y;).

Abel gives a cleaver way to do the computation (§ 4, p. 150-159), first writing

or ré0y
§Fx = Fox = F()Tf;y and
f(x, y)ydx
= _# flx ’)L(sg ’—l—f(x ”)L(gg s + flx (n))L(gg (n)
= FoxF'x , Y oy’ y Y oy 'y » Y Hy y

1 r
= — ,y)—34860
mmmeﬁy
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where the sum is extended to the n roots y', y”, ..., y® . Then he writes f(x, y) =

? S;yv) where f](x, y)isapolynomialin x, y, of degree < n—1iny, f,x a polynomial

in x and x'y the derivative of xy with respect to y. If f1(x, y) =80y = RVy + Rx -

y"~!, with Ry polynomial in x, y of degree <n —2iny and Rx a polynomial in
X, it is easy to see that

S LED T ke (54)

X'y Oy
Thus dv =) f(x, y)dx = =) o I;(l)j 7> here the sum is extended to the u roots
xi of Fx = 0. Grouping the roots of Fyx and of fx, we obtain dv = — ) o Ijlgx

where R;x has no common root either with Fyx or with f,x and the roots of
01x annihilate Fox or fox. If Rpx is the quotient and R3x the remainder of the
Euchdlan division of Rlx by 61x, one computes that ) 7 R“‘

; in the expansion of in decreasing powers of x; th1s result comes from

1X
91x-Fx
the development of % = alfxﬁ in decreasing powers of «. A rather more
complicated computation, based on the decomposition of % in simple elements,

. -1 . S
gives Y 915?;% = — Z’vd‘gv_] (0(‘§/13ﬁF;3) where the sum of the right hand side is

Wg.

extended to the roots S of 6;.x and, for each S, v is the multiplicity of 8 . Unfortunately
this result is incorrect and Sylow corrects it in the notes at the end of the second

volume of Abel’s Works (p. 295-296). The correct result is

Z R3x . , 1 d‘)_l RIIB Z 1
Orx- F'x Ivdp-1 \ o8 (x — B)Fx
(x ﬂ)v From (54), we draw Rix = Fox - Fx ) fl(x)y) %Y \where Fyx =

is a rational function of x independent of a, @', a”, ... as are 91x fi(x, y) and

where vx =
0] X

frx

1
x'y. Thus dv = —[] glzif 3 fl;x;’) My o /%ddx‘)\;,l (sz » fl)gxy\) 850‘)’) where the

symbol [] denotes the coefficient of 1 + in the expansion of the following function in
decreasing powers of x. Now the expression in the right hand side is integrable and
gives

Fox — fi(x, ) ;1 oav! be «ﬂ(x Yo
v:C—l_[el—xZ e 10g9y+z To 2o Z oghy ).

(55)

In general Fyx = 1 andthen Fox = 1,0;x = fox. If forexample fox = (x—pB)",
the formula (55) takes the form

Z/(fl(x ydx _Hz(xf_l(ﬂ)my) log Oy

Byx'y
1 dm fl(lgv B)
T g (Z X'B logeB)
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where B is the value of y when x = 8 (the second term disappears if m = 0).

In the fifth paragraph (p. 159-170), Abel studies under which conditions the right
hand side of (54) is a constant independentof a, @', a”, . . . He supposes that Fox = 1;
then 6;x = f>x must be constant and ) | % c-11X f‘;x ) Jog fy. In
order that this expression be constant, he finds that the following condition must
be realised: sup h / ';fy{,f))) —1 where, for any function R of x, 2R denotes the

1<k<n
highest exponent of x in the expansion of R in decreasing powers of x. This condition
is equivalent to & f1 (x, y®) < hx'y® — 1 for I < k < n and Abel deduces from it
that h(tmy(k)m) < hx/y(k) —1lforO<m<n-—1landl1 <k<nif

i,y =to+ny+ny*+... +6,y""".

A proof of this deduction is given by Sylow in the notes (Euvres, t. II, p. 296—
297). The condition now takes the form ht,, < 1 énf (hy'y® —mhy®) — 1 for

0 <m<n-1and 1 < k < n. Abel arranges the y*' in a way such that
hy < hy” < ... < hy™, Thus, in general h(y® — y®) = hy® for £ > k and
hy'y® =hy +hy” + ... + hy®D 4 (n — k)hy®. Now one sees that

Jnf (YO —mhy®) =y +hy" Ry,

sothat ht,, = hy +hy" + ... +hy?® ™D 24 e . with0 < g,_,_1 < 1.
Let us suppose that

hy? = (56)
"

an irreducible fraction, for k¢ +1 < j < k¥, 1 < a < ¢ (here k¥ = 0 and
k'® = n). Since k@ — k=1 must be a multiple n‘® 1@ of u®@, we have k@ =
') 4 OO IR <np—m—1<k@DandB=n—m—1—k@,

(a+1) (a+1)
pm + Ay

" (@) (@) _
hty =n'm' +n'm" + ... +n'%m 2+ @D ,

(57)

(a+1)
Ap

where = pn@ e 4 p is the remainder of the division of —Bm@*D by

! ’

pn@*D . For o = 1, this shows that #,_g_; = 0 unless £ > 2. This inequality

signifies that the quotient of —Bm’ by u' is < —2 or that "/, < B < 2“/,, the least
possible value of 8 being 8/ = E ( 7+ 1) (integral part of “ + 1). In addition,
one must impose 8 <n—1land 8 <k’ =n'p/ (condltlon neglected by Abel). Now
itg >n—1, /,+1 > n and, since @' < n, r’r‘l, 1sequa1t0—orto— which

imposes to xy to be of degree 1 with respect to x; in this case, [ f(x, y)dx = [ Rdy
with R rational in y, is algebraic and logarithmic in y. Sylow (GEuvres, t. 11, p.
298) observes that the least possible value of g is still 8’ in the case in which
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g—l, + 1 < n’i/, with the only exceptions of xy of degree 1 with respect to x or
xy = y> + (Ax + B)y + Cx?> + Dx + E; in these cases, f f(x, y)dx may be reduced
to the integral of a rational function and is expressible by algebraic and logarithmic
functions. Finally, the abelian integrals leading to a constant in the right hand side
of (55) are of the form

/ (to+ 0y + ..o 4 tup_1y" 7 Ddx
X'y
where the degree ht,, of each coefficient #,, is given by (57). Such a function involves

a number of arbitrary constant equal to y = hto +ht; +... +ht,_p_1+n—p =
hto + ht; + ... + ht,_» +n — 1. Using (57), Abel transforms this expression into

A} N m' + A} 2m' + Al R W'’ — Dm’ + ALy
Y ==

n w w w
Ag m//+A/1/ 2m//+A/2/ (n///LN— l)m//+A;://H//_l
W /L” M// +...+ M//
+ n’m’n”u”
Ag/ m’”—i—A’l” me—i-Aé” (n///u/// o 1)mm+A;/1/£”M”Ll
+ =2+ ...+
'u/// MW MW MW
+ (n’m’ + n//m//)n///u///
e e ol B

. (@ (@ _
Since AW + AW 4. 449 =n@—UDandn =n'w +n"1w" +... +

2@ @)1
n® p® | this finally gives

’ ,m'n’—l /"o /o m'n" —1
y:nuT—l—nu mn —l—f

Mt
+ n///M/// (m/n/ + m'n" + m nz ) + ...
2

nm' +1)  n"(m" +1) nOm®+1)
5 5 5

@, I " (e—1) . (e—1) m®n® —1
+nu \m'n" +m’'n" + . 4+ mn 4 =

1. (58)

Abel indicates some particular cases, first the case in which ¢ = 1 and

, ,m'n’ —1 ,m' +1
—n

=n +1;
14 w 3 )
more particularly, if in addition 4’ = n,one hasn’ = land y = (n — 1)’"’2_ L In
the second particular case, W/ =" = ... =u® =1=n"=n"=... =n® and

& = n, thus
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y=m—Dm' +m—2m"+... +2m" P £+ m® D _p41

where m® = hy(k) (1 <k <n); when hy(k) =hy for 1 <k <n — 1, this gives

y:(n—l)(n};y,—l>.

Abel finally explains that the result remains true for the integrals of the form

fl(x—,‘)dx even when Fyx is not constant, provided that % be finite whenever x
is replaced by a root B of Fyx and y by the corresponding value B. In the final notes
(Euvres, t. 11, p. 298), Sylow says under which precise conditions the number y
determined by Abel coincides with the genus p later defined by Riemann: the only
multiple points of the curve defined by the equation xy = 0 must be at infinity in the
directions of the axes and no two expansions of the y® in decreasing powers of x
may begin by the same term.

As we have said, if there are « indeterminate coefficients a, a’, a”, ... in 0y, one
may choose arbitrarily  couple (x;, y;) of common roots to xy = 0 and 8y = 0
and determine a,a’,a”, ... by the linear system 0y; = 0, 1 < j < «. If some
couple (x;, y;) has a multiplicity k, one must replace the equation 6y; = 0 by

doy; oy, . .
Oy, = L =... = —L = 0. We geta,d’,a”, ... asrational functions of the
J dx; dxk1

(x;, y;) and we may subs{itute these functions in Fx. Abel (§ 6-7, p. 170-180) writes
Fx = B(x — x1)(x — x3) ... (x — xo) FVx where F(Vx is a polynomial of degree
p — o with coefficients rational in the (x;, y;) and Yx = [ f(x, y)dx. According to
(53),

Yixr +Yoxs + .0+ YaXe =V — (Yag1Xarr +. ..+ wuxu)
where X4 1, ..., X, are the roots of FYx =0, s0 algebraic functions of xp, ..., x4,
and v is an algebraic and logarithmic function.

Now « is of the form hqy + hqy + ... + hgn—1 +n — 1 — hFyx + A with
0 <A <hFyxand u = hr — hFox = hOy' + h0y" + ... + h6y™ — hFyx. Thus

w—a=hoy +hoy +...+h0y"™ — (hgo+hqi + ... +hgu_1) —n+1— A.

For any m, h6y > h(g,y™) = hq,, + mhy and, according to (56),

()

hOyD = hgy +m s when kD 41 < j < kO, (59)
m

Letus suppose that the maximum value of i (g, y(j)m) forn—k© <m < n—k®bH—1
and k=D 4+ 1 < j < k® is obtained for m = p;:

© m®
hq,, + MW >hgup1+(n—p— I)W or

m®
hqp, —hgn_pg—1 > —p—1-— pz)m
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for kD < B < k® —1. Thus hq,, —hqu p1 = (n—f—1— pg)m(@ +ey +AY

where 8/(;) is a natural integer and 0 < A/(SK) < 1. The sum of these equations for £

fixed and B variable gives

n® (5) m®
(h(Ipz + pe (Z)>

{4 —1 £ ¢ £) 0) £)
——(2n—k<>—k< P DnOu O+ AP+ A AT

£ {4 £
+ {;‘E)) + 8(1 S 4+ Ei(i’m“)—l +hq,__pe-n + ...+ hg, o

= Lon — k® _ je-n 0,0
2
L o, ®
+ En W =1+ Co+hg, -1 + ...+ hq,_ o

(13) ()

+ &
KD 41 < 5 kY. m = p, and then sum up all these inequalities for £ variable.
This gives

(&)

where C; = +ot e 00 Let us write the inequalities (59) for

hoy + hoy" + ... + hoy™
>hgn1+hg, 2+ ... +hqo

1
+ Z( n — KO _ = _ l)n(z) 0 + 2n(l)(u“) D+ C{)

or hOy +hoy"+. .. +h0y™ —(hgo+hqi+... +hg,—1) = y'+C1+Ca+... +C,
where
—1

y/ —n'm <n’,bL/2— 1 + n//M// + I’l////LW 4.+ n(s)M(s)> + n/:u 5

o (n”,u” —1 "W " L+ n(s)u(e)) +n” W =1
2 2
+ ...
(e=1) 1) _ (e=1) _
4D D) <” e n“)u(’“‘")) S Lt
2 2
© (6 _ © _
N il NN Y

2

We finally obtain u —a >y ' —n+1— A+ C; 4+ C, +... + C, and we remark
that, according to (58),

Yy —n+1l=y,

sothat y —a >y —A+C1+Co+... +C..
As Abelnotesit, u —a =y — Awhen C; + C, +... + C, = 0 and, for each ¢,
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m®

KO
hoy = th( + /OZW- (60)
He shows that, for a convenient choice of fy, these conditions are realised. The first

one signifies that ) = 0 for k=D < B < k® —1and 1 < £ < ¢ or that

m® ©
hgn-p-1 = hqp, —(n — B —1— pz)m — Ay (61)

for k=1 < B < k'® — 1. The degrees hq,, will then be definite if we know the hq,,
and we have by (60),

m® m®
hqp, + MW > hqp, + PaW (62)

for any ¢ and any «. Abel puts % = oy and deduces from the preceding inequality

(Pe—1 — pe)oe < hqp, —hqp, | < (Pe—1 — pe)Oe—1.

Thus hq,, — hq,,_, = (pe—1 — pe) Be—10¢—1 + (1 — O_1)oy) where 0 < 6p_; < 1,
and hq,, = hqp, + (p1 — p2) (0101 + (1 = 01)02) + (02 — p3) (6202 + (1 — 02)03) +
coo +(pe—1 — pe)(Og—100—1 + (1 — B_1)0o¢). Inversely, for any choice of hg,, and
of the 6, (between 0 and 1), these values of hg,, verify the inequalities (62). It is
then possible, using (61) and some work, to prove that (60) is verified; a narrower
limitation is imposed to the 6.

All this discussion was made in the hypothesis that the only condition limiting
the indetermination of the coefficients of the ¢,, was that the polynomial Fyx divides
the resultant ». When more conditions are imposed to limit the number « of the
indeterminate coefficients a, @', @”, . . ., the minimum value of ;& — o may be of the
formy —A—B < y— A.Inthe final notes (Euvres, t. I, p. 299-300), Sylow explains
that A is the reduction due to the presence of singularities at a finite distance on the
curve xy = 0 and that the additional reduction B is due to the eventual coincidence
of the initial terms in some of the y*). Moreover he explains how Abel’s formula
(58) may lead to a computation of A.

In the following paragraph 8 (p. 181-185), Abel explicitly deals with the case
where yy is of degree n = 13 in y, the degrees in x of the coefficients p,, being
2form =0,2,8 3form =1,3,6,9;4 form = 4,7,10; 5 for m = 5 and
1 for m = 11, 12. He determines the exponents 2y® by a method similar to

that of the Newton polygon and finds hy" = hy” = hy"” = ’ﬁ—,/ = ;—‘, n =1
hy(4) — hy(S) — hy(6) — hy(7) _ hy(8) _ % — %, n" = 1; hy(‘)) _ hy(IO) —

hyD = py(? = Z# = 50" =2 hy" =5 = —1, 0" = 1. These values

give y = 38 and the limitations 10 < p; < 12,5 <0, <9,1 < p3 <4and py = 0.
Choosing for instance p; = 11, py = 6, p3 = 4, he finds A, = %, A, = %, Al =
A =3 Al =23 Ay =1 Ay =1, A, =0, A} = { and then & < 6, <
% <6, <1and % < 63 < 1. The values of the differences

bl

Slous

bl
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hqs — hqi1, hqs —hqs, hqo — hqs

are correspondingly limited and they may be: hqs — hq11 = 2,3; hgs — hgs = 0;
hqo — hqys = —3, —2. It is now possible to determine all the degrees hg,, knowing
0 = hq». The possible values of « are 136 + 47, 1360 + 48, 1360 + 57 or 136 + 58.
The corresponding values of p are 136 + 85, 136 4- 86, 130 + 95 and 136 4 96. Thus
u — o = 38 = y for every choice.

Then (§ 9, p. 185-188) Abel extends his relation (53) in the form

hiynixy + hovoxo + .0+ hoPgXxe =0

where the coefficients hy, hy, ..., hy are rational numbers. In the paragraph 10
(p- 188-211), he deals with the case in which xy = y" 4 pg where py is a polynomial

in x and the integral Yx = §§f—gj§ where f>x and fzx are polynomials in x.
U142 )

If —po = r{'ry?...rk where the polynomials r{, r,, ..., 7, are squarefree and
[ e

relatively prime by pairs, let us put with Abel R = r/" r," ...r", so that the

determinations of y are y(k) =" 'RA<k<n),w being a primitive n-th root of

1. The determinations of the integral ¥x are of the form w=" f 'I’;?,fgfc where e is an

integer and (53) takes the form

w MY + o MY+ F o MY,

1 a7 ' [ Fox- (63)
:C_l—[@+ , (2x <P2x>

fox Ty dx’-! Dx
where
0% = 1;3: (log OR + ™™ log B(wR) + 2" log (w? R)
+ .. o D" 0gh(@" I R)). (64)
Let us first suppose that all the coefficients in qo, ¢, . . . , g, are indeterminate,

sothat @ = hqo + hqy + ... + hq,—1 +n — 1. Inour case, hy = hy" = ... =
hy™ = - Wehave e = 1andn = n'p/ = k'. Let us determine the minimum value
of u — . According to the relation (61),

/

m /
hqm = hqp, + (p1 — m); - A, (65)

with0 < A) < 1. Here the number p is

hr = nhq,, +n'm’p (66)
and, according to (58), u —a = y = n’u/% —n/% +1= ”—glnhR— %"/ +1.
But this value can be lowered by a more convenient choice of #y. For 1 <m < ¢
and 0 < 7 < n — 1, Abel puts 6,, = E%—i—EZ"T"’—l—...—i—E("_:EM and
Smx = Om — E (™2 — %) where E denotes the integral part of the following

n
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fraction and the «,, are natural integers. He takes the coefficients g, of 6y of the

5148 5 .
form g, = ver, "R L. ree™ where the v, are polynomials in x. Then g, R™ =
1
S ki k k _
Vet My e " R™ where R = rll‘”rzz’” T kg = TR

(e denotes the excess of the following fraction over its integral part), and

0+ 9,422 0,4 %
OyerD =0/ (x, ey, T

where 8’ (x, €) = vg RO4w v RV+w* vy RD+. . .+ Vey, RV 0<e<n—1.

This gives F()x:r;ieﬁalrgeﬁaz oMt and Fx=6/(x, 0)0'(x, 1)...6'(x,n — 1).

_ f3x 80y __ f3x  Fx-86'(x,e) f3x _ fx
Now (54) takes the form Rx = ) o = Fox Y. Tt F e and o=

Oy Sm
where
_pmuy i e muy min mue
fx=f3x~r1E " rzE " ...raE "ands, =r " r," e
Thus
Fox - fx Fx , R ,
Rx = 80°(x,0) + w 860°(x, 1)
sn \o'(x.0) 0(x. 1)
oI o)+
w M ——_56(x,
0'(x,2)
F.
fo Y syea—1y).
0'(x,n—1)
Since the %50/()6, e) are polynomial in x, R®, RD  R"=D g0 linear com-

binations of the s,, with coefficients polynomial in x, it results that Fyx divides Rx:
Rx = Fyx - Ryx. Now one sees that Fox = 1, 61x = f>x and that (64) takes the form

— ﬁ ! —m / —2m /
02X = (logb'(x,0) + @ " logf'(x, 1) + @ log6'(x,2)

m

+. 4o "M og (x,n — 1)).
Here

w=hr —hFyx
=nhq,, +n'm'p; — ((n6; + a))hry + (nbr + ax)hry + ... + (nb, + a,)hr,)

where n’'m’ = nhR = pihry + puyhry + ... + puehr, . Thus, putting p for p; ,

= nhq,+ (nip —nby —a)hry + (L2p — nby — az)hr;
+ ...+ (uep — nB, — ) hr,
= nhv, + (nd,, — nb + ppy — a)hry + (ndys, — nby + ppr — az)hr,
+ ...+ (nés, — nO; + pe — ag)hrg

PH1 P2 — 2
n

— —
71;”,1 T ne Ple €
n

hro+ ...+ ne———hr,.

= nhv, + ne
n
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On the other hand

a=hvg+hvi+...4+v,_1+n—1
=hqo+hqi+...4qua+n—1= Guo+dni+...+nn1)hrn
m

—1 /
=n (hvp + Z(Sm’ph}"m> —+ (np — %) %

m
MWD

B Z(5m,o + 8m,] +... .+ Sm,n—l)hrnr

Abel computes 8,0 + 8.1 + ... + Smn—1 = oy + (n — 1)6,, and finally gets

— —k — —k
a =nhv, + (ne'ou1 L l) hry + (na'o'uz ®»_n 2) hry
n

n 2 2

_ _k ’
+...+<n8pue Fe 1 E)hrg—1+n+n
n 2 2

where k,, is the g.c.d. of u,, and n . This gives

n—k n—k n—kgr _n—;n’ze 67)

n—a= 5 hry + 22hr2+...

independent of p, ay, o, ... , o, and we have u = nhv, + nhR® (cf. (66)). The
degrees hv,, are determined from hq,, = 81, hry + o mhra + ... 4+ 8 mhre + vy
and (65) which give

!

m
hgm =hv, + (p — m)p + (b1,p = S1,m)hry + (82, — S2.m)hra

+ .ot (Bep — Sem)hre — A,
=hv, + E((k1,, — kim)hry + (ka,p — kom)hrs
+... .+ (ks,p - ks,m)hrs)

R
=y + Eh . (68)
Abel adopts new notations: Xo41 = 21 , Xq42 = 22, - - - » Xy = 265 a1 = €1, Cay2 =
£, ..., =&y 0 = w, and o = m, and he rewrites (63) in the form

' Yxy + O Yxa + . ol Yxg VW Ty Y+ ) Yz (69)
_ 1—[ Jxox Z/ 1 d=" [ fx-ox
S (X) fox I'vdx'—1 \ s, (x)9x

where 01 (x) = forx = A(x — B1)"1(x — B2)"2 ..., fx is an arbitrary polynomial,

ox =logf'(x,0) + @ ™logd (x, 1) + @ >"log &' (x, 2)
+. 4o "M ogd (x,n — 1)
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and Yx = % Here, x1, x2, ... , x4 are considered as independent variables
. / Vd / - / —
and zy, 22, ..., z¢ are the roots of the equation 0@00GD..0G@n=b _ () The

(z—=x1)(z2—x2)...(2—Xar)

coefficients a, d’, a”, ... are determined by the equations 6’ (xy, e;) = 6'(x2, €3) =
. = 0'(x4, €,) = 0 and the numbers ¢, €;, ..., & by 0'(z1, 1) = 0'(22,82) =
.= 9/(29, 89) =0.

Some particular cases are explicited by Abel, first the case in which fox =
(x — B)¥ with, for instance, v = 1 or 0. In this last case the right hand side of (69)

reduces to
e
sm(X) fox

which is constant when & fx < —E(—hs,,(x)) — 2
When n = 1, there is only one s, = 5o = | and yx = [ % Then R© = 1,
0’ (x, 0) = vy and px = log vy. The relation (68) takes the form

‘w-xl+wx2+'--+wxa+wZ1+¢Zz+...+w29
Sfx o 1odT [ fx
=c-J[==1 — X
1_[ fox 0gv0+2 Tode—1 \ox 2%
where vg(x) = a(x — x)(x — x2) ... (x —xe)(x — z21)(x — 22) ... (x — zp), but it

is possible to make 6 = 0 in (67). For « = 1, one finds the known integration of

rational differential forms. .
Whenn = 2and R = ri'ry ,takeal — landas = 0. Thenso = 1,51 = (r172)2,
1 ] ]
RO — r LRV = r ,0'(x,0) = v()r1 +v1r2 L0 (x, 1) = vor1 —v1r2 and w = —1.
l l

M and, writing ¢ox and ¢ x respectively for

U()rlz —V] r2

For m = 1, we find ¢x = log

r1 and rp, (69) takes the form

Vo/ IV
Za)l/fX—FZ?TI/IZ—C l—[ log 0+/%0X + V1 /@1Xx
fzx VPoXP1X T 00 /PoX — V1,/91X

+Z,i AR | L LT U tA T
I'v dx"—1 9x . Jpoxg1x & Vo/PoX — V1 /P1X

_ Jx-dx H 1
where Yx = N and v; are determined by the equations vg./@ox| +
W1V /P1X1 = Vo/poxa + wvi/gixa = ... = 0 and zy, 22,...,20 by
2 2
Wo@)“ox—W 1 @)"¢1X _ () The signs m; are given by m; = — 20 yP0tk We have

(z—x1)(z—x2)...(z—Xq) Ul(’l\)\/W
ki=ky=1,0= %hrl + %hrz — "7/ = % (h(ryry) — n’) where n’ is the g.c.d. of 2
and h(ryrp). Thus @ = m — 1 for h(poxp x) = 2m — 1 or 2m. Taking p = 1, we
have by (68)

1 hvy + 5 (heix — hox) — 3
hvy = vi + E=(hg1x — hgox) = ]
2 hvy + 5 (he1x — heox)
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depending on whether h(pox - ¢1x) is odd or even. When m = 1, 6 = 0 and
Yx = [ jg ~ 'de where R is a polynomial of degree 1 or 2. This integral is an algebraic
and logarithmic function and Abel explicits the computation, taking gox = 9x + 8o,
o1x =&ex+8;, o = (x —B)’, vy = 1l and v9 = a. Whenm = 2,0 = 1 and
h(pox-@i1x) = 3 or4 so that ¥x is an elliptic integral. The relation (69) takes the form
o Yx1+wrxo+. . 4wy Ux, = v—m¥z; where vis algebraic and logarithmic. The
product of the roots of the polynomial (voz)?@oz — (V12)’¢01z = A + ... + Bz¢t!
A (_1)ct+l A

, where £ is a rational function of xj,
B x1x...x¢ B

X2y et ax()lﬂ «/¢0x17\/¢0x2a st ’«/(poxm '\/wl-xlv \/(pl-XQa L] «/(plxothen

1S X1Xx2...x421, Whence z; =

oox =1, 01x =g+ o1 x + azxz + a3x3, v = 1 and vy = aqp + a;x,
we must write vox; = —w1./P1X1, VoX2 = —w2./@1X2, Whence

W10/ Q1X1 — 2X1\/P1X2 _ Wa/Pr1X2 — W1/P1X]
) .

X1 — X2 Xy — X2
2 2
_ 2 _ _ 1 XQIX X710 201X X /PIX g1 X2
Then A = ag—Qo, B = [0 %] andzl = w1t 1—x0)2 (o %))

which gives the addition theorem for elliptic integrals.
Whenm = 3,0 =2 and h(gox - 1x) = 5 or 6. Abel explains certain particular
cases, for instance that in which yx = [ (Aot4)0dx which gives

«/ao+a]x+...+a6x6,
x££+ Yx, =tz £ Yz + C,

where 7z, z are the roots of a quadratic equation with coefficients rational in xi,
X2y o s Xas o/ R1, A/R2s .., /Ry (Where Ry is the value of R corresponding to
x = xi). As we have said in our §1, Abel explained this result, with &« = 3, in a letter
to Crelle.
The last example dealt with by Abel is not hyperelliptic for he takes n = 3,
1 2 1

2
3.3 3.3 3.3 pO 1
R(zz)r1 r2,a1=a2=0.Thens0=1,s1:rlrz,strlrz,R():so,R()zsl,
R =5, and

12 21 L2 21
0'(x,0) = vo +viriry +variry, 0/ (x, 1) = vo + wvir s + @tvari s,
/ 2 % % % %
0'(x,2) =vo +wviryr; +wvrir;,

which give Fx = 6'(x, 0)6'(x, 1)6'(x,2) = vg + v?rlr% + v%rlzrz — 3vguyvaryra.

Here
34n

2
where n’ is the g.c.d. of 3 and r| + 2hr;. Thus 6 = h(gox@x) — 2 if hry + 2hr; is
divisible by 3 and 6 = h(gox¢@;x) — 1 in the contrary case.
Since the french Academy did not give any news of his memoir, Abel decided
to published his theorem for the particular case of hyperelliptic integrals in Crelle’s

O =hri+hr,+1-—
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Journal (vol. 3, 1828, (Euvres, t. 1, p. 444-456). It is this publication which inspired
Jacobi for the formulation of the inversion problem (1832). In a letter to Legendre
(14 March 1829), Jacobi said of Abel theorem that it was “perhaps the most impor-
tant discovery of what the century in which we live has made in mathematics . . .
though only a work to come, in a may be distant future, may throw light on its full
importance”. The statement is the following: “Let ¢x be a polynomial in x, decom-

posed in two factors ¢, x, gox and let fx be another polynomial and yx = | o fz ‘)’%
where « is an any constant quantity. Let us designate by ag, aj, az, . .. , co, 1, €2, - - .

arbitrary quantities of which at least one is variable. Then if one puts

(ao + ar1x + ... + apx™*@ix — (co + c1x + . .. + cmx™) > ox
=Ax—x)(x—x2)...(x —xp,)

where A does not depend on x, I say that

aiyx) + exr + ...+ e xy,

fo Io (ap +ara+ ...+ a,d") Joro + (co+cra+ ... + ™) Jorax

Joo & (ap +ara+ ...+ a,a™) Joroe — (co +cra+ ...+ cpo™) Joro
+r+C

where C is a constant quantity and r the coefficient of % in the expansion of

fx o (ap +arx+ ...+ ax")Jo1x + (co +c1x + ...+ cwx™)JSp2x
(x — ) Jox g (ap +aix + ...+ apx")Jo1x — (co + c1x + ... + cpx™) /P2 X

in decreasing powers of x. The quantities €1, &, ... , &, are equal to +1 or to —1
and their values depend on those of the quantities xy, x2, ... , x,.”

Putting Ox = ap +ajx + ... +a,x",01x =co+cix+ ...+ cpx" and Fx =
(6x)%¢1x — (61x)%@ax, the quantities x1, xa, ... , x, are the roots of Fx = 0. We
have F'xdx + § Fx = 0 where

SFx = 20x - p1x - §6x — 201x - pox - 501 x.

Now the equation Fx = 0 implies that 0x - ¢ x = €0, x./px and 0 x - pox = €0x,/ox
where ¢ = +1 . Thus F'xdx = 2&(Ox - 80;x — O1x - 80x). Jox and e —L_ —

Graox
zfx(e"(ff‘(;;% 2000 — (x_f;; 7= Where Ax = (x —a)A;x 4+ Aa and A, x are polynomials.

This leads to
fx-dx X 1 Yo AX
e L) - - __= =
Zg(x—a)‘/fpx Z:F’x—i_ aZ(x—a)F/x Fa+1—[(x—a)Fx

(the sums are extended to xy, x2, ... , x,,) and then to the relation of the statement.
The values of the ¢, are determined by the equations Oxy ./@1X; = €01 Xk/P2Xk.

In a second theorem, Abel explains that the same statement holds in the case in
which some of the roots of Fx are multiple, provided that 6x - ¢;x and 61x - @ox
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be relatively prime. The third theorem concerns the case in which fo = 0, so that

Yx = [ f:’;;i; where fx is a polynomial (written for xfoa). In this case, the right hand
side of the relation reduces to

fx Ox/P1X + 01X /p2x
C+ 1_[ log — .
Jox O0x./o1x — 01X /prx

On the contrary (theorem IV), when the degree of ( fx)? is less than the degree of
a1 e giat0ia/era :

N log o ORIV Abel deals with the
by successive differentiations starting from

@x, the right hand side reduces to C —

dx

case of the integrals yx = [ ey

k = 1 (theorem V).

The sixth theorem concerns the case in which deg(fx)> < deg @x, that is of
) o GotSix 48 x )dx Sl .
integrals of the form yx = [ Y/ e pm e where v’ = 5= — 1 when v is odd
and Vv = % —2whenvisevenorv =m — 2 forv =2m — 1 or 2m. In this case,

the right hand side of the relation is a constant.

The general case of Yx = [ &% where r is any rational function of x is reduced to

the preceding ones by decomposing r in simple elements (theorem VII). As there are
m +n + 2 indeterminate coefficients ag, ay, . .. , o, ¢y, . . . , Abel arbitrarily chooses
w' = m + n + 1 quantities xj, x2, ..., x, and determines ag, ay, ... , o, C1, . . .
as rational functions of x1, x2, ... , X/, /OX1, /OX2, ... , N by the equations
Oxi/P1Xk = €101 xk/@2xr, 1 < k < /. Substituting these values in Ox and 0;x, Fx
takes the form (x—x1)(x—x2) ... (x—x,/) R where R is a polynomial of degree 1 — i/

with the roots x4, X,/42, ... , x,. The coefficients of R are rational functions of
X1y X2, -0 Xy /X1, A/ PX2, s P Putting 61 = &, = ... = ¢, = 1,
Euptl = &2 = -0 = & = —L Xy 41 = X, X402 = Xy, ..., Xy = X, and
X4l = V1, Xp42 = Y2, ... , X, = Yy, Abel rewrites the relation of the statement
in the form yrxy + Yo + ...+ Yy, — Y| — Yy — = Yxg, = v — e Yy —
gua¥yr — ... — €y, where X1, X2, ..., Xy, X], X5, . ,x;lz are independent
variables and yy, y», . .. , y,s algebraic functions of these variables. He determines the

minimum value of vV = u—u' = w—m —n—1, where u = sup(2n + vy, 2m+v,),
v; and v, denoting the respective degrees of ¢;x and ¢px. The mean value of
2n + vy and2m+v2ism+n+L2V2.Thus Vo> %—1 = 5 — | where
v is the degree of ¢, and this minimum value, which is the same as that of the
theorem VI is attained (theorem VIII). The signs &, are determined by the equations
0y; /91y = —¢€j01y; /92y, 1 < j < V' Naturally, when some of the x; or of the x;,
are equal, one must replace the corresponding equation Oxy /@1 Xx = &x01Xk/P2Xk
by a certain number of derivatives of this equation.

The memoir X (Euvres, t. 11, p. 55-66), unpublished by Abel, Sur la comparaison
des transcendantes, gives a testimony of an early form of Abel theorem. It begins
by the same demonstration as in the large memoir for the french Academy, to reach
a relation of the form

Yxi+yxo+ ... +Yx, =C+p— Wz +v+...+9z) (70)
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where Yx = [ f(x, y)dx, y being an algebraic function of x and f(x, y) a rational
function of x and y. Here z1, 2, ... , z, are algebraic functions of xy, x2, ... , x,, C
is a constant and p is a function algebraic and logarithmic of xi, x2, ... , x,,. Abel
proposes a method to compute C in the hypothesis in which © > v; we shall see
examples of it later.

In the following, he applies his theorem to the particular case in which y is
a rational function of x, defined by the equation o + o;y = 0 where «, ; are
polynomials in x. Then the auxiliary equation 6y = 0 is of degree 0 in y, of the form

O=g=a+ax+...+a,_1x" ' +x" =sand ydx = MO‘ . The n

quantities a, ay, . .. , a,—; are determined in function of the n 1ndependent Varlables
X1, X2, ..., X, by writing that these variables are roots of the equation s = 0, and
v =0. When y = x™, yx = 1 " and the theorem states that
o (x'”+1 F ittty = /(Pmda+Pm+1da1 + .ot Punorda, 1)
where P, = ds Ty —I— d —I— -+ d; . Now the left hand side is a polynomial mLH Om+1
clxl clxz dxp

ina,ai, ..., a,— and we thus have P, = mil an+1 . In particular P, = %
where Q| = —a,— and this gives

Ph=Pi=...=P,»,=0,P_ =1, (71)

identities used several times by Abel. In the same manner, when y = (x—;a)’”

o ! 1
T T 1=yt
and
1 1 N 1 n n 1
m—1\(x;—a)"! " (p—e)! T (x, —a)n!
= / (PVda + PVday + ...+ Py Vda,_,)
k k k
where PP = ail &+ 2 4. .. 4+ —S__ Thus we have
(xp—a)™ dxl (xp—a)™ d)é (Xn—a)mﬁ
® _ 1005,
" m—1 Oa
where
AR B B 1
T —am ! g —e T (g — e

When m = 1, ¥x = log(x — «) and the left hand side of (70) is

log(x; —a)(x2 — @) ... (x, — ) =log(—=)"(a+ aja + ... + ap_1" ' + o).
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k) _ ok
Thus Pl T atajat..ta,_jo Tt

Now supposing that s = (a +ajx + ... + x,L_l)c“_1 + x*)px — fx where

pox=ajand fx = - +8x+...+8,_1x"h),

n—1
we have ydx = a(daﬂdaﬁ';}jx au-1) and we see that p = 01in (70) if dega <

dega;. The quantities x1, x;x, ..., X, are related by the equations a + a;x; + ... +
au_lx,’f_] +x; = %, 1 <k <n.Letx], x5, ..., x| beanother set of quantitites and
suppose thatdeg o < degor; we have yx; +¥xo+. . .+, = x| +yai+. . . +¥x).
Now it is possible, by a convenient choice of §, §i, ... , 8,1, to impose Yx, =

Yx,_ =...= wx;ﬂ = 0. Thus the theorem is written

Yxy 4 s Y, = Y] Y 4 Y

For instance, if « = 1 and o) = x, ¥x = —logx and s = § + ax +ax>+...+
ay—1x* + x* 1 Thus 8§ = (=D xpxg . ooxppr = (DX X)L .x/,,, and we
may impose X, = x; = ... = x;LH = 1 to get x{ = xyXx2...x,41. In this case,
the theorem gives log x; + logx, + ... + logx,41 = 10g(x1x2 ... Xu41). A second
exampleis givenbyo = 1, o) = 1+x2, yx = — arctan x. Let x1, x», x3 be solutions
of the equation 0 = 8§ + §;x + (1 + x?)(a + x); we have arctan x; + arctanx, +
arctan x3 = C constantand x{x,x3 = —8—a, X;+x2+x3 = —a, X1 X2+X1X3+X2X3 =
81+ 1. Thus x; + x2 + x3 — x1xx3 = 6 and x1x2 + x1x3 + xox3 — 1 = §;. Now
putting x3 = x5, x = —x5 and x; = x|, we get C = arctan x| and x| + x/ (x5)? = §,
1 + (x})? = —8;, whence x| = —% = % Thus the theorem gives
arctan x; -+ arctan x, + arctan x3 = arctan %

At the end of this memoir, Abel generalises the relations (71). Considering the

integral
/fx-dx = lﬂx—i—ZAlog(x —9)

where fx and ¥x are rational functions and the auxiliary equation gx = a + a1x +
..+ a,x" = 0, with the roots x|, x3, ... , x,. By the theorem

/fxl-dx]—l—/fxz-dxz—i—...—i—/fxn-dxn

=1//x1+1ﬂx2+...+Iﬂxn+ZAlog(x1—5)(x2—6)...(x,,—8)=,0

Where _dp — da ( fxl + fx2 + ...+ %)‘i‘dal (xl -fx + X2-JX2 fxa +...+ Xrl'/fxn)_i_

ox1 T ¢x ¢'x1 ¢'x; @'xn
X Xy X fx
1 2 nJin

Cobday (L 22 g,

Now ¥x; + ¥x, 4+ ... 4+ ¥x, is a rational function p of a,ai,...,a, and

x1 =82 —68)...(x, —90) = (—1)”% so that p = p+ > A(log 9§ — logay)
and
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ap ap 1 0pé 1 oay,
_r _ Al =22 - =
oa, oa, + Z ((p(S oa,  a, oa,

X" fx X0 fx x™ fx,
=_<1f1+2f2+ _'_nfl)'

@'x1 pxa T ¢,
" fxq x5t fxo X fan AS'"

Abel deduces that 1 0 Ty et aam —y A A o ( )
where the superior 51gn is taken when m = n and the inferior 51gn whenm < n. For
fr=lyx=xp=x1+x+...+x, = Zn‘ and A = 0. We find back (71)
and the relation

Xy x5 X)) a,_|

gxi ¢xa T glx, az

Forfx:xlj,p=0andA=1;ifo=ﬂ+,81x+...+,8”x”wehave

Fx; Fx; Fx, Bn Fs
- +ot——=
()C] - 5)<P/x1 (XZ - 5)‘/7/)52 (xn - 5)(,0/)6” ay €08

and other relations by differentiating this one.

6 Elliptic functions

Abel is the founder of the theory of elliptic functions. He partook this glory with
Jacobi alone, for Gauss did not publish the important work he had done in this
field; the ‘grand prix’ of the parisian Academy of sciences was awarded to Abel
and Jacobi for their work on elliptic functions in 1830, after Abel’s death. Abel’s
work on elliptic functions was published in the second and the third volumes of
Crelle’s Journal (1827-1828), in a large memoir titled Recherches sur les finctions
elliptiques ((Euvres, t. 1, p. 263-388).

Abel briefly recalls the main results of Euler, Lagrange and Legendre on elliptic
integrals and defines his elliptic function o = x by the relation

dx
V= 2x2)(1 + 2x2)

(72)

where ¢ and e are real numbers. This definition is equivalent to the differential
equation

o =1 = pra)(1 + )
with ¢(0) = 0. Abel puts fo = /1 — c?¢?a and Fa = /1 + ¢2¢%a and explains
that the principal aim of his memoir is the resolution of the algebraic equation of
degree m? which gives go, fo, Fa when one knows ¢(ma), f(ma), F(ma) (cf. our
§3).
The first paragraph (p. 266-278) of Abel’s memoir is devoted to the study of
the functions ¢, fo and Fo. According to (72), « is a positive increasing function
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of x for 0 < x < 1. Thus gu is a positive increasing function of « for 0 < o < 5

c
1/c

_ dx
- '({l N (1=c2x2)(14-€2x2)
¢(—a) = —@(a). Now Abel puts ix instead of x in (72) (where i = ./ — 1) and gets

and we have ¢ (%) = 1. Since « is an odd function of x,

ly i i 1 = if, so that xi = i) wh =[——& .
a purely imaginary value o = i, so that xi = ¢(Bi) where ({m

We see that § is a positive increasing function of x for 0 < x < % and that x is
a positive increasing function of j for

1/e
dx

w
O — =
=P= 2 0/\/(1+C2x2)(1—e2x2)

and we have ¢ (%) = i%. Abel notes that the exchange of ¢ and e transforms @

in o, f(ai) in Fa, F(ai) in fo and exchanges w and .
The function ga is known for =% < o < § and fora = i with -5 < 8 < Z.

Abel extends its definition to the entire complex domain by the addition theorem:

pa- [B-FB+¢B- fa- Fa

pla+p) = L+l 2f
_ fa- fB—c?pa- B Fo-FB
fla+pB) = T g% o°F ; (73)
. 2 . . .
F(a+/3)=Fa FB+ e po - @B - fa f,B'

1+ e2c2g2a - 2B

This theorem is a consequence of Euler addition theorem for elliptic integrals,
but Abel directly proves it by differentiating with respect to « and using ¢'a =
fa - Fa, f'a = —c*¢a - Fa, F'a = ¢*@a - fo. Thus, denoting by r the right hand
side of the first formula, he finds that g—; = g—’ which shows that r is a function of
o+ B. Asr = pa when B = 0, this gives r = ¢(« + B). From (73), Abel deduces

oatBroa—p) = LI oot pypap = 2T )
fatpfia—p = LI fiay ) fra—py = ‘Zczg’“'*;ﬂ‘F“'Fﬂ,
Fla+p)+Fa—p) = ZFO;‘F’?, Fla+p)— Fla—p) = —zez‘p“"”lf‘f“'fﬂ
and
oo+ Brpta—p) = £ o py o py = LEZ O TR g

FB+¢a- f2p
R

Fla+ p)Fla—p) =
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where R = 1 4 e2c?¢*a ¢?B.
On the other hand f ( %) F ( )=0give
w 1 fa w oo
) L ( :i:—): 2y 2% 76
o(o23) =t g fe23) =/ ray (76)
Vet 1 | F
F(aif):ﬂ_,go(aizi):ig_a’
2 c Fo 2 e fu
/2 L2 1
F(aifi) =j:i\/e2+czw—a,f<ai gi) _yere L
2 fo 2 e fa

These relations imply that

el o

andg (0 +2)p(a+Zi)==+L, F(a+%) = Fu VeiJcm = f(a* Zi) fo. We
deduce that ¢ (% + %t) =f (% + %1) =F (%’ + %l) = é i.e. infinity. From (77)
we have
pla+ ) = —pa = p(a + i), fla + o) =—fo=—fla+ i), (78)
Fla + w) = Fu = —F(o + @i)
and

0Qw+ o) = pa = pQRwi + ) = p(w + @i + ), (79)
fQw+ a) = fa = f(wi + a), Flw+ @) = Fa = FQwi + «).

Thus the functions ¢, fo, Fo are periodic:

o(mw + nwi £ o) = £(=1D)""pa, fmo +nwi +a) = (-1 fa, (80)
Fmw + nwi £ a) = (—1)" Fo.

: . . . F(Bi)+ F
The equation ¢(a + Bi) = 0 is equivalent to £ ’}(i’zzc(f;) a‘/zf&lf)" = 0 (cf.

(73)) and, as ¢a, f(Bi), F(Bi) are real and ¢(Bi) is purely imaginary, this signifies
oo - f(Bi)F(Bi) = 0 and ¢(Bi) fa - Fo = 0. These equations are satisfied by po =
@(Bi) = 0orby f(Bi) F(Bi) = fa-Fo = 0.Thefirst solution givese = mw, f = nw
and it fits, for p(mw + newi) = 0. The second solution gives & = (m + 1) w, B =
(n + %) @ and it does not fit, for ¢ ((m + %) w+ (n + %) wi) = (l). In the same way,
Abel determines the roots of the equation fx = 0, which are x = (m + %) w + nwi
and those of the equation Fx = 0, which are x = mw + (n + %) wi. From these
results and the formulae
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i 1 Ve +c? 1 N 1
PxX=— P w.’fxz w.va: o\’
ecy(x—4§—%i) e f(x—%i) c  F(x-3%)
(81)

he deduces the poles of the functions ¢x, fx, Fx, which are x = (m + %) w +

(n + %) wl
x=a) p(xta)p(ata

From (74) ¢x — pa = i(i(ezzz(p)zf((xﬁl )) ZEXE“§ . Thus the equation px = g@a is
equivalent to ¢ (552) = 0 or f(2¢) = 0 or F(&2) = 0or ¢ (35%) = § or
@ (*3%) = 0. Thus the solutions are x = (—1)"™a + mw + nwi. In the same way,
the solutions of fx = fa are given by x = £a + 2mw + nwi and those of Fx = Fa
by x = *a + mw + 2nwi.

The second paragraph (p. 279-281) of Abel’s memoir contains the proof by
complete induction that p(np), f(nf) and F(n,B) are rational functlons of ¢, f,B

and F§ when n is an integer. Writing ¢(nf) = -, f(nf) = -~ and F(np) =
where P,, P,, P,/ and Q, are polynomials in ¢, fﬂ and Fp, We have by (74)

Py
Povi _ _Puor 2fB-FBg,  —Pui(Qa+ P +2P,0,00 1)7

Ont1 On1 14 62c2<p2ﬁ£—’§ On_1R,

where x = B,y = fB,z = FBand R, = Q2 + ¢*c*x? P2, and we conclude that

Qn+] = Qn—ana Pn+1 = — n—an + 2yZPnQnQn—l-
In the same way P, = —P,_ R, + 2yP,0,0,-1 and P/, = —P/ R +
2yP) Qn 0,_1. These recursion formulae together with y> = 1 — ¢%x? and 2 =
1 + €2x2, show that Q,,, f 33, sz{“ P, sz‘,“ Pz”n and Pz”“ are polynomlals in x2.
The equations ¢(nf) = g’; fmp) = " and F(n,B) = Q” are studied in

paragraph III (p. 282-291). When n is even ‘here noted 2n, the first equation is
written

92np) = xyzr(x?) = xP(x)y/ (1 — 2x2) (1 + €2x2)

or ¢*’(2np) = x*(Yx>)2(1 — Ax*)(1 + €2x?) = 6(x?), where x = ¢p is one of
the roots. If x = ¢« is another root, p(2na) = +¢(2np) and, by the preceding
properties,

o = £((=1D)"2nB + mow + uwi)).

Thus the roots of our equation are po = +¢ (( D" 4 S+ 4 wz) formula
in which we may replace m and p by the remainders of their d1v1s10n by 2n, because
of (80). Abel remarks that, when 0 < m, u < 2n, all the values of o so obtained
are different. It results that the total number of roots is equal to 8n2 and this is
the degree of the equation for it cannot have any multiple root. When n = 1,
the equation is (1 4+ €*c>x*)@?>(28) = 4x*(1 — *x?)(1 + ¢*x?) and its roots are
+oB, £o (—B+ %), to (—B+ Fi) and £¢ (B + § + Zi).
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When 7 is an odd number, here written 2n+ 1, the equationis p(2n+1)8 = SZZLTI

and its roots x = ¢ ((—=1)"*B + 1@+ 2nJrlZIfl) where —n < m, u < n. The

number of these roots is (27 + 1)? and it is the degree of the equation. For example
n = 1 gives an equation of degree 9 with the roots 8, ¢ (-8 — %), ¢ (=B + %),

¢ (=p—5i). o (=B+5i). ¢(B =5 = 5i). 0 (B=5 +5i). (ﬂ+———l)
and ¢ (B+ % + Zi).
P/

Abel studies in the same way the equations f(nff) = o and F(np) = g—'/i of

which the roots are respectively y= f (B+ 22w+ Lwi) andz=F (ﬁ—i—%w—i—%"wi),
(0 < m, < n). Each of these equations is of degree n>.

There are particular cases: P;, = 0, with the roots x = :I:go( w+ Lwi)
O <m,u <2n-—1), Py, 1 =0, with the roots x = go(2n+lw+ Pk ) ( n <
m,u < n), P, = 0, with the roots y = f((2m + %) 2+ nzm), P! = 0, with
the roots z = F(’”a)—}— (2u+ 1) wi) O0O<m,u <n-—1)and Qy, = 0, with the
roots x = ¢ ((m + 3) £ + (,u+ 3)2) (0 <m,pu<2n—1), Qs = 0 with the
roots x = (=1 ((m+ 3) 527 + (1 + 3) 520) (- = gt = . on, o) =
(n, n)).

The algebraic solution of the equations ¢(nf) = = o f(nﬂ) and Fnp) =

g—’g is given in paragraph IV (p. 291-305). It is sufﬁuent to deal w1th the case in
which n is a prime number. The case n = 2 is easy for if x = ¢5, y = f5 and
z = F3, we have

f y> —2x%72 1= 20%x% — et
o = =
1 + e2c2x4 1+ e2c2x4
2+ e2y2x2 1 +262x% — 2c2x*
Foa = 224 22,4
1 + e?c?x 1+ e?c?x
Fo—1 _ 2.2 1-fa _ 2.2 2 _ Fotfa 2 _ Foatfa
Hence 1Jrfm_ex ,Faﬂ_cx and z© = o Y = Tifa and we draw
— I—fo _ o Fa+ fo o Fa+ fa
3 = o Tom = fa+1 f3 i 5 =\ T . From these formulae,

it is possible to express Oais [ 20; with square roots in function of ¢, fo, Fo.
Taking @ = % as an example, Abel finds

2
1) 1 c\/ez—i—c2 6‘2
Y- = =
4 /2 + ¢ /e2+02

1
f%: \/6‘2+62—C e + 2, F— ,/ — [F—.

The case n odd was explained in our §3. The essential point was that the auxiliary
functions such as ¢; 8 are rational functions of ¢ because of the addition theorem
(73). At the same place, we have dealt with the equation P5,+; = 0 (§V of Abel’s

memoir, p. 305-314)) which determines the quantities x = ¢ %) We saw
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that the equation in r = x? is of degree 2n(n + 1) and that it may be decomposed in
2n + 2 equations of degree n of which the coefficients are rational functions of the
roots of an equation of degree 2n + 2. The equations of degree n are all solvable by
radicals, but the equation of degree 2n + 2 is not solvable in general.

In paragraph VI (p. 315-323), Abel gives explicit formulae for

@((2n + DP), f((2n + 1)B) and F((2n + 1)p)

in function of the quantities ¢ (ﬂ + m‘;:flw d ), f (,3 + m‘é’:ffv i), (,3 + ’"‘;:f:f’ : )
Let Poyyi = Ax®0" 4 4 By, Py o= Ay®H) 44 By, Pﬁ/nﬂ =
AT L Bz and Qg = CxO DT 4 D= Oy
+D' ="z +D° =1 4+ D" (an even function). From the equations

Ax@HD? L4 By = o(Qn + DB - (CxPHV 1 44 D),
Ay L LBy = f(Qn+ DB - (C Y@ D,
A7 L LB = F(Qn 4+ 1D (CVZ 4Dy,
considering the sum and the product of the roots, Abel deduces that

m mw+uwi
e(2n + 1)) = Z Z( DA ( W)

m_*llll-—fn
AFT mo + pewi
"D 1 ) 82
Dm1=_[n#1=_[n(p<'3+ 2n +1 ) (82)
In the same way

A 3 mo + pUwi

2 1 = — _lm mao -+ pawl

flen+np=25 3 D« )f<f3+ o )

m=—n jl=—n

/

S Gy (82)

m=—n p=—n

and
- mw + pwi
F@n+Dp) = = n;n MZ;H (=D"F (ﬂ t o )
I (82)
B D// m=—n u=—n 2n + 1 .
The coefficients 4 o é,, é,, , which do not depend on B, are determined by letting 8
tend towards the pole 5 + Zi, for they are the respective limit values of

p(@n+1Dp) f(Cn+ D) F((2n +1)p)
7 ’ 1B ’ Fp '
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Putting 8 = % + %i + «, where o tends towards 0, and using (80) and (81), Abel
A L A& — A — D" Since the limit of W when g tends

determlnes. CT P T = 2n+1
towards 0 is 2n + 1 we find

A~ mw - Ui
n41== ? 2
e Dl_[l(p <2n+1>ﬂ¢ (2n+1)

m=
L o (mo+pwi\ , (mo— uoi
Xﬂﬂ‘p( 20+ 1 )‘p< 20+ 1 )

In the same way, letting 8 tend respectively towards 5 and 5+ we get

; A e, pwi
coransn =TT (5455 17 (54 5 75)
N (o mo+uwi , (0 mo-— uoi
Xl—[nf <§+ 2n+1 )f <§+ 2n +1 )

m=1 pu=1

AV & (o) mw - () UL
D’ <2l+2n+1>n <2l+zn+1>

m=1

. mow+ powi mw — Wwi
F? (= F? _—
XHH ( SR > <2 L P )

m=1 pu=1

from which it is possible to draw the values of 4 5 D " and A,, Abel further simplifies
the expressions of ((2n + 1)B), f(2n + 1)p) and F ((2n + 1)B) as products by the

formulae

pB+apB—a) _ Zz_ﬁ
via il
f+afB-a) _ D)
(5 +e) | - raigy
Fp+o)F(p—a) 1_% (cf. (75) and (81))

2 (Z; - F?
PR - e

and he thus obtains
o(2n+1)p)

_ ¢ TT ¢ zlf;ill

(2n+1)go/3m]_[1 goziéﬂl_#
(5320 v (3430 45)

Qe SR

m=1 p=1 1 - maw+pwi mw—pwi
¢’( +F T ) ‘/’2(%‘*' i+ 5T )
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f@n+1)p)
2 2
B 8 1— 128 1 — B
=] £2(g+Fi+ ) 4= P(3+5i+42%)
72(3+ 5 72(3+ 5
<[111 ; : (83)
— 1B _ /7B
m=1 p=1 1 f2<%+%i+m(§;rf]m) 1 f2(%+%i+m(§;f]m)
F(2n +1)B)
2 2
=D"Cn+ DFE[] - e I - Er
T P(segiegn) T P
(g (g
X 1_[ l_[ F2B F2B (837)
) R (Rt

expressions of ¢((2n + 1)B), f((2n 4+ 1)B) and F((2n + 1)p) in rational functions
of B, fB and Fp respectively. Abel also transforms the last two to have [(@ntDF)

1B
F(@n+1)B)
F

and in rational functions of ¢p.

In his paragraph VII (p. 323-351), Abel keeps o« = (2n + 1) fixed in the
formulae (82) and (83) and let n tend towards infinity in order to obtain expansions
of his elliptic functions in infinite series and infinite products. From (82) with the
help of (81), we have

B 1 o
T+t

1 . o+ mo o —mw
1y
+2n+1m§( ) (‘”<2n+1)+‘p<2n+1>>
1 - o+ puwi o — Ui
1M Zree -
T2 <¢<2n+1>+¢<2n+1>>

n=I1

_isy (D" —m,n — )
ec

m=1 p=1

oo

F Y D = — )

m=1 p=1

where
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1 1 !
(m, 1) = *
4 2n + 1 at(mtd ot ()i a=(nt Jo (1t 4) o
10 T (2 2n+1
and
Yi(m, ) = — 1 * :
RS TE S T a(m+§)o (it §)m
) il (2 2n+1
Now
Am=(2n+1)<<ﬂ< +miu ‘P<an_+mw>>
=Q2n+1) 20 (557) f (555) F (3y)
1+ €2C2§02 (21,1,1_7_)1 ) (p2 (ZnD-ti-l)
and

o+ pwi o — uwi
B, =2 1 - - =
w=Cnt )<‘p< 20+ 1 >+¢< 2+ 1 ))
2¢ (51) f(zlﬁa) F (271?1)

L+ eeg? (475) ¢ (557)

=Qn+1)

remain bounded and the first part z;ﬁ(p%“ + m > (=1)™(Au + By) of g
m=1

has O for limit when » tends towards oo. Thus

__L n n B s B B
o = echmZZ( D" y(n — m,n — p)

m=1 p=1

L.. n n B - B B
+—lim) oy ()" —mon = ).

m=1 p=1

n—1 n—1

It remains to compute the limit of > Y (=1)"T#yr(m, n) for the second part
m=0 u=0

will be deduced from the first by changing the sign of i. We have y/(m, u) =

#w where e = feFeand e, = (m+ 1) o+ (n+ 1) wi (cf
211-&-1(/)2(%“)_(/;2(%) - n = > M > .
(74) and (75)) and this has for limit O(m, u) = 2a > when n

o2 ((m+3 )t (n+ 4 ) i)
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n—1 n—1
tends towards oco. Abel tries to prove that Y (=D y(m, u) — > (=1)*0(m, )
n=1 n=1

is negligible with respect to ﬁ by estimating the difference ¥ (m, ) — 6(m, ),
n—1

but his reasoning is not clear. Then he replaces > (—1)*6(m, u) by the sum up to

n=1
oo
infinity using a sum formula to estimate Y (—1)*6(m, n), again negligible with
n=n
respect to 5. He finally obtains

g = el—c i(—l)’” iH)“ ( 2
m=1 n=l1

= ((n+ Yo (ut o)’

_ 20 )
@ — ((m+ ) o+ (u+ 1) wi)’

1 & > Cu+ o
— > (=D" ) (="
“MX::I ,; ((Ot—(m+%)w)2+(ﬂ+%)2ﬂ‘f2

~ Qu+ Ho ) )
(a+ (m+ Do) + (u+ 1) o2

By the same method, Abel obtains

fo‘:%i(i(_l)m 2(a+ (m+ 1) o)

s et o) +(ut ) w?

_i(_l)m( 2(a—(m+%)a)) >’ (84')

a—(m+1) o) +(u+i) o

u=0

1l = | w 2u+1
Fa:—z Z(_l)ﬂ Cu+ Nw
c _ 1y )2 1\2 o
m=0 \ u=0 (Ol (m + 2)60) + (IJ’+ 2) o
[e.¢]
2u+ Do
+> (=D ). )
1=0 (et (m+3)o) +(nt3) @
He deals with the formulae (83) in the same way by taking the logarithms.
P )
A" tt) L ' Gotumite?
For any constants k and ¢, ———-2"<—= has a limit equal to —"=%7=~ Abel
1— m - (merZwH»Z)z
wz(%ﬁlﬁ)

tries to proves that the difference of the logarithms ¥ (m, ) and 6(m, n) of these
expressions is dominated by m, with the difficulty that m and p vary in the

sum to be computed. He deduces that the difference Y ¥(m, u)— Y 6(m, ) is
pu=1 n=1
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n oo
negligible with respect to 2nlﬁ and replaces Y 6(m, n) by Y 6(m, u). The proof
=1 =1
N N 1 1
that > 6(m, pn) = > 6(m, n + n) is negligible with respect to ﬁ is based on
pn=n+1 n=1
the expansion of 6(m, i + n) in powers of « but it is not sufficient. Abel finally gets

n n

o0 o8
lim > Y y(m,u) = Y > 6(m, u). He deals in the same way with the simple

m=1 p=1 m=1 pu=1
products in (83) and obtains
o?
It —)
< (nm)?
o0 062 00 o

e8] 1 o 1] - —>
< (mw+;w‘fi)2 (mw—uwi)2

I I l_[ _ 1 o? — ;!:[1 1 — 1 o? —
ey ) R (e PRy =)

2

Xﬁﬁl loct)orne) — (D)

T (o (e o) (o (n- b))’
=T (e %)

pu=1 (M - %)2 w?

. .
R (S P )
Abel also writes these formulae in a real form.

The Eulerian products for sin y and cos y lead to
2

[ A
© §22 i 0 1 -1 2712
urm sSmz H=7 COS Z
[ ey
Ly 2 zcosy Ly 2 cosy
n=1 (M_l)zrﬂ pn=I (,11.—1)2712
2 2

and this permits to transform the double products of Abel’s formulae in simple
products:

w sin (eZ) 5 o?
v :;% 1_[ (1 B mza)z)

m=1
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— sin(a + mw) Z sin(a — mw) Z cos® (m — §) wZ
< [1 | ‘
cos (o~ 1)) Z eon(a— (m— 1) o) Z simb a2

m=1 2
(moZ)’

x 72i2
(a + mw)(a — mw) 2
N )
sin i —
_E gy ] l_[ sin? mow Z i
T sin? Zi

m=1 11—
2(m—L o Zi
cos (m z)wwt

Bl
N—"
S8}

3
—_

|
N
=

s [=
EISEE(
H4 1
1l
5
HES
glg| g

3

Il
—_
_l’_
N
=
T

T
rl—
~— =
gle | 8le
B
=I5
ERES
| el
l—
N
e

B
\—/

45in? X
1+ w 5
00 mwn mwomn
® . o (h o —h e )
:—sm—ll PR (85)
SIn“ =——
T w el 1 w

w

T @m—Dor _ @m—Don \2
(h 2w —h 2 )

where h = 2.712818... is the basis of natural logarithms. In the same way, he
obtains

45in? &L
1+ @ .
( QCm+)on _ (2m+l)m‘rr)
o] h 3] —h @
R 11
1 4sin? 2 ’
m=1 ( Cmthor  Cm+Dor )2
h 2] —h @
1 4sin? o
00 - mon _mor \2
%4 (h o +hT @ )
o = COS — 1_[
f w 1 4sin? &Z
m=1 Q2m—Dwr _ @Cm—-Dor 2
(h 2w +h 2w )

These expansions were known to Gauss and they were independently discovered by
Jacobi, who used a passage to the limit in the formulae of transformation for the

elliptic functions.
The expansion of ﬁ in simple fractions gives

e B Qu+ Do

2D 3 ;

D @t ho) +(w+ ) o
2 1

7 el lerd)o)s

which permits to transform the formulae (84) in simple series. Thus
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2an

o p@mAD S | p-@m )

sin%-<h(’"+z) T ()T )

_ m
eca)z( D R @mAD T +2cos2aZ +h~ Cm+1)E

(86)

and

s (hg + h*%) (h(’”*i)"fz’f + h(’“i)ﬁf)
5>

2am 2amr

SR T T

4 h7(2m+1)%

47 & COS%'(h("H DT 4 ("’*5)”’;‘5’)
f"‘zz;mZ

ot RCmEDEE L2 cos 207 + p—@m+) T

In the lemniscatic case, where e = ¢ = 1, one has w = @ and these expansions take
a simpler form

( a)) )7 (haz” —h T WY Y Y Y
pla=) = _
2

7 " — + —= — — ...
hT +h~1 hF +h ¥ T 4 h % )
471 ( rr) hi . (3 71) nE 4 (5 n) nE
= sin — sin — ) ———= +sin =) — -],
o 1+ A7 “2) T n 21+
JT +h_T h}arr -‘,—h 30{;1 . h502m —|—h iarr
%o T-hnt o pF o ¥ pF oy )
f(‘“) (”) 1o (1) s ”)—h%ﬂ
o cos (a— —cos (3a— cos (Sa— —...
2 ® 2/ hr—1 h37 — 2 ) wim_1
i 03 i i
and,takmgoz:O,%’=2n(m—m+h5 — ) f o

w? 2 hi 3 ns 45 nE
— =7 - - ).
4 h™+1 "B 41 T 4+1
The second part of Abel’s memoir, beginning with paragraph VIII (p. 352-362),
was published in 1828. This paragraph is devoted to the algebraic solution of the
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equation P, = 0 which gives ¢ (f) in the lemniscatic case and for n a prime number
of the form 4v + 1. Abel announces that there is an infinity of other cases where the
equation P, = 0 is solvable by radicals.

it NS @md) f(uud) F(pd)+ig(ud) f(md) F(mé)
Here, by the addition theorem (73), ¢(m + ©i)é = T Z(m5)92(ad)

= @8T where T is a rational function of (¢8)> because of the formulae of multipli-
cation. One says that there exists a complex multiplication. Putting ¢§ = x, we have
o(m + ui)d = xy(x?). Now @(81) = ipd = ix and p(m + wi)is = ip(m + pi)é =
ixyr(—x?) and this shows that ¥ (—x?) = y¥(x). In other words, ¥ is an even function
and T is a rational function of x*. For instance

0(28) f5 - FS + i - f(28)F(25)
1 — (¢28)%¢%8

P2 +i)8 =

’

where (26) = 2¥L g5 — T 0% Fs = T+ 22, f(28) = =22 and

14x4 14-x4

F(26) = “’ﬁ# Thus (2 +1i)8 = xi % Gauss had already discovered the
complex multiplication of lemniscatic functions and the fact that it made possible
the algebraic solution of the division of the periods. He made an allusion to this
fact in the introduction to the seventh section of his Disquisitiones arithmeticae, but
never publish anything on the subject. We have explained this algebraic solution in
our §3.

The ninth paragraph of Abel’s memoir (p. 363-377) deals with the transformation
of elliptic functions. The transformation of order 2 was known since Landen (1775)
and Lagrange (1784) and Legendre made an extensive suty of it in his Exercices
de calcul integral. Later, in 1824, Legendre discovered another transformation, of
order 3, which Jacobi rediscovered in 1827 together with a new transformation, of
order 5. Then Jacobi announced the existence of transformations of any orders, but
he was able to prove this existence only in 1828, using the idea of inversion of the
elliptic integrals which came from Abel. Independently from Jacobi, Abel built the
theory of transformations. Here is his statement:

“If one designates by « the quantity %W, where at least one of the
two integers m and u is relatively prime with 2n + 1, one has

dy dx
/ - ia/ 2,2 2.2 &7)
\/(l—c%yz)(l—i-e%yz) \/(l—cx (1 + e*x?)

(@Pa—x?)(¢*20—x?)--(p?na—x?)
(14-e22@2a-x2)(1+e2c29220-x2) - (1+e2c2p?na-x2)

o= oG ra)e(G e o(G )

L7 wi wi ) wi 2
a—z(¢<7+“)¢(7+ “)"“”(7*”"‘)) ’

a= flpa- - @3a---pna)>.” (88)

where y = f - x
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Here f is indeterminate and ¢, ¢> may be positive or negative. By (80) (periodicity),
we have (0 + (2n + D) = ¢ or (0 + (n + 1)) = (0 — na). Now if

010 =0 + 0@ +a)+ ...+ @O+ 2na),
we have ¢ (0 + ) = @0 and ¢,6 admits the period «. This function may be written

@10 =90 + @(0 + @) + (0 — a) + 90 + 2a) + @0 — 2a)
+ ...+ 90 +na) + p@ — nw)

— 0l + 2¢0 - fo - Fo 206 - 20 - F2a
= 1+ e2c2@?a - ¢*0 1+ e2c2p?2a - 20
290 - fno - Fno
PRI LA | (89)

"1+ e na - ¢26°

a rational function {x of x = @f. Note that the auxiliary function ¢;0 used to solve
the equation of division in the first part was precisely of this type (see §3).

pre
of degree 2n + 1 in x. It is annihilated by x = ¢¢ and so by x = ¢(e 4+ ma), m any

integer. Since ge, p(e + ), (e +2), ... , (e + 2na) are all different, they are the
roots of R and

R:A<1_i)<1_L)...<1_#) (90)
3 ole + o) ¢(e + 2na)

where A is found to be 1 by making x = 0. Multiplying by ¢¢ and then making

¢ = 0, we obtain
(=) (1) (- )

(1 4+ e2c2p?a - x2) - - - (1 + e2c*pna - x2)

2 2 2
(-2) () (- 2)

(1 4+ e2c2¢p?a - x2) - - - (1 + e2cp2na - x2)

Forany ¢, R = (1 - ﬂ) (1 +e2p?ax?) ... (1 +e*¢’nax?) is a polynomial

Yx = gx
€2y

:gx
where g = l+2fa-Fa+2f2a-F2a+...2fna~Fnaisthevalueof%fors =0.
Doing ¢ = ¢ in R , we have

LY

(=) () vim)
o) () (i)

where p = (1 4+ &2c?@?a - x2) (1 + 2292 - x?) - - - (1 + e*c?¢?na - x?). Changing

x in —x, we have
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1+ s 1+ — 2 4 2
0y 9(%+a) 9 (% +2a)

y 1+#21
¢(5+na)) p

Abel puts y = kyrx, ¢ = ﬁ (k a constant),
2

:<1_m><1_m>...<1—m»
() ) (o)

2
in order to have 1 — c;y = (1 —cx)% and 1 +c;y = (1 +cx)%.

Y2
In the same way, 1 F ejiy = (1 — eix)%, 1 +eiy =+ eix)% where

e = ﬂ:m and

Thus /(1 = y2)(1 +y?) = £151 /(T — 2x2) (1 + e2x). Nowdy =

where P is a polynomial of degree 4n. Differentiating 1 —c;y = (1 — cx)%, we see

that
P (etp—(1—co(2p% — 1P
=—\|ctp—(1—cx — —t—
c1 p 'de dx

is divisible by 7 and, in the same manner, it is divisible by #;, s and s;. Since these

four polynomials of degree n cannot have any common factor, it results that mi o

is a constant @ and that ——%  — 44 dx  When x = 0,

a
J A=y (1+e3y?) A/ (1=c2x2)(1+€%x?)

t=t =s=ys zlzpandP:%:klﬁ/(O):kg.
According to (90), the coefficient of x***! in R is —

1
pe-p(eta)--p(e+na) and, com-

. . .. =" g
paring with (91) it is equal to o1 paata Thus

_ (=D
(pa - 2 - - - pna

Qi€ )2g08~(p(8+(x)~-g0(8+n0l).
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Now (89) and (91) give two expressions for the limit of % for x infinite:

g(=D"

1 and .
(ce)? (pa - p2a - - - pna)*

Thus, by comparison, g = (—1)" (ec)*" (pag2a - - - pna)* and
16 = (e0) (pag2a - - - pna)*peg(e + ) - - p(e + 2na).

In particular

@1 (8) = 1 = (ec)”"8%¢ (Q) % (ﬁ) + a) ) (% + Zna) ,

2) " ka 2)%\3
(5) = o = o (Fi) o (Fi+ ) (Fi+2n0)
—1l) = — = (ecC —1 —1 oa)--- —1 no

1% ke, v\ % 1%

where § = po - 92« - - - pnag The values (88) of the statement for ﬁ and é result
if we put f = k(e?c?)"8? and, as ¢ (% + @) ¢ (Zi + ) = L (cf. (76)), we obtain
cle; = i%. On the other hand

i% - (—1)"§(ec)2" ((p (9 +a) ¢ (9 + 2a) . (% +noz>)4,

2 2
4
:I:c—l = (—1)"E(ec)2" (go (zi + Ol) ) (gi + 201) ) (zi + na))
el e 2 2 2
anda =kg = (=1)"f - 6°.
: w 2 —2p’a w 2 202

Using (¢ (¢ +a))” = LLZ }+c2$2a and (¢ (%i+a))” = —}2% (cf. (76)),
one transforms the expressions of % and % in rational symmetric functions of ¢o,
@20, ... , pna. Reasoning as in his §V for the equation Py, 1 = 0, Abel deduces

that, when 2n + 1 is a prime number, ¢; and e; are determined by an equation of
degree 2n + 2 (the ‘modular equation’ as it was called later). Now such an equation
has roots not necessarily real and Abel says that the theory must be extended to the

case of moduli ¢, e complex numbers.
2mw

When ¢ and e are real, the only values of « giving ¢ and e, real are 57°% and
Quwi .
5np1- The first value gives

1 f 1 o 3 0w 2n—1w))’
o c\P\i2)%\mr12) N\ mr2))

el—:l:( 1)”8( )Zn 1 w 3 w m—1w\\*
o cO P\ 2)% \anri2) N\ m2))

Abel explains in particular the case in which ¢ = ¢; = 1,+(—1)" = 1 and
0 <e < 1. Then e; is very small when 2n 4 1 is large. Abel carefully studies

1—x2
1—y2°

the sign in (87). Since p? is positive for x real, this sign is that of rf;ss;
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Now ss; is easily seen to be positive and the sign we are looking for is that of

= [1-— 2“‘% 1— ’n‘ w for the radical is
4 (TH 7) n 7

t)

7

., . LL)
positive. For instance, when — 5 <x=<g 2n ) the sign is + and we

t(—1)" 4n+2 d t hich d
get (—1)"a f \/m by doing x = (2n+1 2) o which corresponds
y= (D" .If we neglect el, this gives approximately (—1)"a = (2n + 1) and

dx _ (=D'w
JA =) +ex2) @n+Dhx

arcsin y

) (o)
fory=(—1D"2n+ 1)Zx ( Wz(m) wz(m) . Abel also explains the
T ) o )

2uwi
2n+1-°
transformation is obtained by combining the transformations of order 2 studied by

Legendre with his new transformations. He will publish a proof of this statement in
his Précis d’une théorie des fonctions elliptiques (1829).
The last paragraph of the Recherches (p. 377-388) is devoted to the study of the

differential equation dy =a dx and, in particular to the cases
V=) 4y A (=22 (14 px?)
in which there is complex multiplication. Abel states two theorems: “I. Supposing

a real and the equation algebraically integrable, it is necessary that a be a rational
number.”

“II. Supposing a imaginary and the equation algebraically integrable, it is nec-
essary that a be of the form m £ /—1 - \/n where m and n are rational numbers.
In this case, the quantity p is not arbitrary; it must satisfy an equation which has an
infinity of roots, real and imaginary. Each value of u satisfy to the question.”

Here Abel only considers a particular case, that in which e; = é for the first real
transformation. Thus we have

dy dx
—av_1
\/(l — yz)(l + ezyz) a\/_\/(l _ x2)(1 +€2)C2)

effect of the other real transformation o =

He states that every possible

(changing y in el—,y), (92)

2(_o 7x2 ol 2 new 7)(2
where y = +/—1le"x (1+(:;<p(22(n;1jr)1 )ng_ugi(;;l()ﬁ%))xz), e being determined by

= o5k o () oy o= 2t ()

=

From (92), Abel deduces % = agz,%5 (integration from

f\/(]+zz)(1 e2z2)
=0tox =¢(3%), vy =2/—Dand ¢ =a%. Thus a=2n+1=2.
dy

dy = )34 where
A (1=y2)(1+e2y?) V(1= (14+e2x2)

For instance, when n = 1,
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2 (w

3)1
S G1_s
%) ¢ (%)
This gives ¢ (%) = */7? ande = /3+2,¢ (%) = 2/3—3.Changing xinx /2 — /3
and y in y,/2 — /3+/—1, Abel obtains \/pzf%yzfyz& = .3 \/l+2il/)%x2—x4 where

3= x2
y=x 1+J3x2

I
Q
[S5]
/N
S
N
| —
e
N~
N~
(i}
|
Q
5]
|
Q
38}
AN
[§S)
—~
w|e
N—
[N
=
o
Q
I
AN

Q|

~_

2 1%}
Forn = /Z5____dx _ here v — T2y L)~ 2
W (=) (1+eld) y=v-lex oy

2( 2w x
B g ()0 (). 5 = € (9) ¢ (2). Using ¢ (3)
1+e~¢ (?)x
f2 2w 2(w
(2 - %w) — Fzgng and ¢? (32) = ¢? (2 - 2) = ?E%; Abel finally gets
—e%/e = 1 e://SS,WhICh gives a cubic equation for e:

e —1—(5+2/5e(—1)=0.

2
This equation has only one solution larger than 1, as e mustbe, e = <*/5+1 + */SH ) .

It is then easy to compute a = ¢ (£) and g = ¢ (%) for o* 8% = ‘/5 and

e —1—ele—1)/5=2e(+ D+ p.

Changing x in \/ and y in £ “\//_ Abel obtains the equation

dy _ 5 dx
JI—4/21 /52—y 142+ /5x2 -t
5=+/10410/5x% 4%

1+4/10+10/5x2+/5x4
For higher orders n Abel says that the equation giving the singular modu-
lus e is not necessarily algebraically solvable and he proposes an expansion of

where y = x

e in infinite series. He starts from (86) with o = %, ¢ (%) = 1 = 1 and
3 5 o . .

gets ew = 471( o +#+ﬁ+...) where p = heZ. With a = Fi,
. . 5 w T

¢ (%Zi) = L, Abel gets o = 4n(ﬁ+r6’ﬁ+rlgﬁ+...) where r = hwo 2

Z /ontl 3T /ot
; 0 _ _ h32 h2
and, since 2 = S2n+ 1, w = 4n/2n+ 1 (h” eTEa + PN +.. ) and

14 1 3 1
2 /2nt1 2 Vol
6:4—”(}' " +h " +...].
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At the end of this memoir, Abel explains how his theory of transformation gives
the formulae published by Jacobi in 1827. Jacobi uses Legendre’s notations, with
a modulus k between O and 1 and the elliptic integral of the first kind F(k, 6) =
0
{ «/ﬁ, so that if « = F(k, ), pa = sin @ where ¢ is Abel’s elliptic function
with ¢ = 1 and ¢2 = —k2. Writing ¢; = 1, e% = —AZ, w = (G2 1) ,x = (—=1)"sin6,
y =siny and 2n +1 = p, Abel’ s formula for the first real transformatlon takes the

form f 1= k2 sm29 1 f 1= AZ sin? + C, where

A=k (sing - sin@” ... sin0Z" D)4,

sin@’ - sin@” - - - sin @@=\ 2
T\ sin®” - sin@"” - - - sin@@»

1
l+f 200 a2 2 M a2 2 9(2n) _ ;a2
2 (sin~ #” —sin~ 6)(sin“ 6 sin” #)...(sin” 0 sin” 0)
and Sln Vf SHI 9 (1— — k2 sin2 6" -sin2 0)(1— —k2 sin2 6" .sin2 0)...(1 —k2 sin2 6@2n) .sin2 0) s

glesd’, 0", . 0(2”) being defined by sin 6™ = ¢ (’” “’) or F(k, 0™) = "% . Since
¢ =c 1—x 1—siny __ 1—(=1)"sinf sin#’—sinH sin "’ +sinf

= ¢l 1+y - 11 1+x I+siny — 1+(—1)" sin @ sin6’+sinH sin 0"’ —sin6 * * *
sin9(2”’1)+( 1)" sin6
sin@@=D —(—1)" sin6’

1 tan 1 (0’ — 6) tan 10" +0
tan(45°——1ﬂ)= f( ), f( .
tan (0’ +6) tan 1(6” — 0)

tan l(9(2"_1) + (—=1)"0) 1

2 o

X— — tan (45 — (—1)"—9> .
tan 5 (6 — (=D)"o) 2

the an-

relation which may be transformed in

In 1828, Abel had begun the redaction of a second memoir to continue the
Recherches sur les fonctions elliptiques (Euvres, t. 11, p. 244-253). Putting o =
%ﬂ_“)m where m, ; and n are integers such that m + p, m — p and 2n + 1
have no common divisor, and

010 = @0 - p(a + O p(a — )pQRa + Qo — 0) - - - p(na + O p(no — 6)
o — ¢*0 0?20 — ¢*0 ©’na — ¢*0
14+ e22@2a - 920 1 + e229?2a - 20 1+ e2c2¢?na - 926’

Abel remarks that this function is rational in ¢f and invariant by 0 +— 6 + «. It
results that the roots of the equation
0= x(cpzot — xz)((p22a x%) .- ((pzna —x%)
—@16(1 + e202g02ax2)(1 + ezc2<p22ax2) (14 e202g02nax2)
are 0, (0 + ), ..., p(0 + 2na). Now let /6 be a rational function of these roots

and suppose that it is invariant by & — 6 + «. Using the addition theorem (73), one
sees that

YO = Y16 4 Y6 - f0 - FO
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where 116 and 6 are rational in @0 and {6 = %(1#0 + 1Y0), Y0 - f0 - FO =
%(1&9 — /1y0) where 76 is the function deduced from ¥6 by changing « into —c.
One has /Y0 = Y10 — Y0 - f0 - FO and /0 is invariant by 6 +— 6 + «. Thus
Y10 is invariant by 6 +— 6 + « and it is thus a rational symmetric function of ¢6,
o0 4+ a), ..., 90 + 2na), that is a rational function of ¢;6. In the same way, one
shows that the square of ¥,0 fOF0 is a rational function of ¢;6, so that y0 = p+./q’
where p, ¢ are rational functions of ¢,6. Let

X0 = (90)*0(0 + ) + (p(6 + a))*p(0 + 2a) + . ..
+(@(0 + 2n — Da)?p(0 + 2na) + (9(0 + 2na)) g
and let 7x6 be the function deduced from x6 by changing « into —«.. One has
X0 = 10+ x20 - fO- FO, 1x0 = 10 — x20 - fO - FO

where x0 and x,0 are rational functions of ¢0, and %( X0 —1x0) = x20 - f0- FO =

vl we—me

—5 = 53—, is arational function of
x5 XO—=/x

:I:\/ r where r is arational function of ¢6. Now

@0 invariant by 0 — 0+, so arational function g of ¢;6 and %(1//6’ =) = +q./r,
Y6 = p + q./r where r does not depend of the function /6.

Abel proves that r is a polynomial in ¢;0, for if it had a pole ¢;8, we should
have x6 — /8 = % which means that some ¢(§ & va) would be infinite, but then
@18 would also be infinite, which is absurd. The expansions of our functions in
decreasing powers of x = @6 are 9,0 = ax+¢, x0 —/x0 = Ax> +¢ wherea, A are
constant and ¢ and &’ contain powers of x respectively less than 1 and 2. If v is the
degree of r, the equation r = %(XG — 1x0)% is rewritten a’x” 4+ ... = LAZx* 4+ .,

— 4
and it shows that v = 4. Since r must be annihilated by 6 = :t%, +Z1, one has

0\? 0 \? . ’
r=C|[1-— («01(0) 1-— ( A L ) where C is a constant.
Y17 P15l

When /6 is a polynomial in ¢0, (6@ + @), ..., (6 + 2n«a), the same rea-
soning shows that p and g are polynomials in ¢;0 of respective degrees v and
v — 2 where v is the degree of 6 with respect to any one of the quantities ¢0,
o0+ a),...,p0 4+ 2na). If v = 1, one has Y0 = A + Bp;0 where A and B are
constants respectively determined by making 6 = 0 and 6 = é. For instance, let us
put 0 = @6 - (0 + vi)p(@ + Vo) ... (0 + v,or) and

P=n0)+nl+a)+r70+2a)+...+ 76+ 2nx)

where vy, v, ..., v, are distinct integers less than 2n + 1. One has A = nw(w) +
7(2a) 4 ...+ w(2na) and B is the derivative of P for & = 0. When w is odd (resp.
even), B (resp. A) is equal to 0, for instance w = 0 gives

00+ 90+ o) + @ +20) + ... + @@ + 2na) = B0
and w = 1 gives

00 -0 +a) + @0 + a)p@ + 2a) + ... + (0 + 2na) b
=go - Q2o+ @2a - 3o+ ...+ ¢(2n — Da - p2na.
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The second paragraph is not very explicit; Abel considers the functions

2n 2n
VO = 89060 +ke), Y16 = )56 + ke)
k=0 k=0

where § is a primitive (2n+1)-throot of 1. Since ¥(0+a) = 8" and v (+a) =
8724716, the product V@ - 16 is invariant by 6 > 6 + a. It is an even polynomial
in the transfqrmed elliptic integral y = ¢;(af), of the form A( y2 — f 2) where
f = @1 (a£Z%). Thus this product is 0 when 6§ = /2% and this gives a remarkable
identity

0 mwi Y muwi n e muwoi 4o +
= — 4« o
Y\ 1 Y\on+1 Y\2n+1

ey (ﬂ n Zna>

2n+1

for a convenient m. Abel has announced this type of identity in the introduction of
the Précis d’une théorie des fonctions elliptiques, published in 1829 (see our §8);
Sylow and Kronecker have proposed proofs for them.

7 Development of the Theory of Transformation
of Elliptic Functions

The theory of transformation and of complex multiplication was developed by Abel in
the paper Solution d’un probleme général concernant la transformation des fonctions
elliptiques (Astronomische Nachrichten (6) 138 and (7) 147, 1828; (Euvres, t. I, p.
403-443), published in the Journal where Jacobi had announced the formulae for
transformation. Abel deals with the following problem: “To find all the possible
cases in which the differential equation

dy = Fa d
\/(1 — 3y (1 — e2y?) V(= 2x2)(1 — e2x2)

(93)

may be satisfied by putting for y an algebraic function of x, rational or irrational.”
He explains that the problem may be reduced to the case in which y is a rational
function of x and he begins by solving this case. His notations are x = A6 when

0=

0 V=) (1-e22)’

1
N = 1 — 2x2)(1 — e2x2 , 2L = f dx ,
V(=2 (1 — e2x2), 4 { T

1
¢ = [—% ____ where ¢ and c may be complex numbers. Abel recalls the
0

A (1=c2x2)(1—€2x2)

addition theorem A (040") = % and the solution of the equation A6’ = A0,

whichis @' = (=)™t 0+ mw+m'e'. Let y = ¥(x) be the rational function we are
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looking for and x = A6, x; = A0 two solutions of the equation y = y(x), y being
given (it is supposed that this equation is not of the first degree). From the equation
% = +adh = +adb,, we deduce df; = £+dO. Thus 6, = o =6 where « is constant
and x; = A(« &= 6), where we may choose the sign +, for A(« — ) = A(w — o + 6).
Now y = ¥(A0) = ¥v(A(0 + @) = v (A (0 4+ 20)) = ... = Y(A(O + ko)) for any
integer k. As the equation y = ¥(x) has only a finite number of roots, there exist
k and k' distinct such that A(0 + ka) = A(0 + K'a) or A(0 + na) = A0 where
n = k — k' (supposed to be positive). Then 0 + na = (—1)’”*’"/9 +mw+m'e and,
necessarily, (—1)"*" = 1, na = mw + m'o or @ = pw + p'e where u, ' are
rational numbers. If the equation y = ¥/(x) has roots other than 1(6 + k«), any one
of them has the form A(6 + o) where oy = piw + i’ (@1, 1} rational) and all
the A(@ + ko + kjap) are roots of the equation. Continuing in this way, Abel finds
that the roots of y = ¥(x) are of the form

x=AO0+kiay + kyor + ... + k)

where ki, k, ... , k, are integers and oy, &y, . .. , «, of the form puw + W'’ (u, 1’
rational). The problem is to determine y in function of 6, the quantities oy, oy, . . . , @,
being given.

Before the solution of this problem, Abel deals with the case in which y =
A1 In this case 1| £ ¢y = £EalHeEa N oy, 0y gafHeke fix 5ng

g +gx 3 g/+gx g/+gx
dy = (J; %:g{c )‘3 dx so that the differential equation (93) takes the form
18— f'g
J&? = et - e
dx
X
gtelf g—cif gtel f g—elf
\/(1 + g’+61f/x) (1 + &”*C'lf/x) (1 + g’+€1f/x) (1 + g’*élf/x)
dx
= :ba .
V(1 = c2x2)(1 — e2x2)
The solutijgs are y T/ aj, c% = Z—%/ ei: Z—i; ):/_: E“—L% c% = Z—Z e% = Z—i
_ 1—xy/ec _ 1 JJe—=/Je _ 1 Jet/e _ —1
Y =M O = Uy O = myeye ¢ = T (c—e).

In order to deal with the general case, in which the solutions of y = ¥(x) are

)“91 A‘(e + al)’ cee )“(9 + am—l)y

Abel writes ¥ (x) = g where p and ¢ are polynomials of degree m in x, with

respective dominant coefficients f and g. The equation y = v(x) is rewritten
p—qy=(f—gn&x—A)(x —210O+ar)...(x — A0 + am-1)). (94)

If " and g’ are the respective coefficients of x”~! in p and ¢, we see that
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f=gy=—(f—gNMO0+rO+a)+... + 1O+ ap_1))

and y = f,ig 2 where g6 = A0 + A0 + 1) + ... + A0 + at,—1). It remains to

express @bt ratlonally in function of x with the help of the addition theorem and to
determine f, f’, g, &', e1, ¢; and a in order that (93) be satisfied. For some « j» itis

possible that A(6 —aj) = A(0+a;) or A(0+2a;) = A0. Thena; = Fw+ my/a)’ with
m+m’ even and the distinct values of (6 +«;) are A0 = x, A(f+w) = —10 = —

w o 11 1 3w o 1 1
)\<9+5+7)=—zm=—m’k<9+ 7)— TGt = - Forthe

other (0 — «;) # A(0 + «;), so it is a root of the equation y = ¥(x), of the form

A0 + o) and we have A(0 + ) + A(0 — aj) = % Thus

2 2
FAO@+a) +AO0 —a) + ... F A0 F+a) + A0 —ay)

K —k1 2xAw
=1—k —
= )x + ec x +Zl—ezczk2aj~x2

/ 3 /
(pe:,\9+k,\(9+w)+k/x<9+9+%>+k”x< o+ 224 2)

where k, k', k" are equal to O or 1.

In the first case considered by Abel, k = k/ =k =0. Let 8,8, ¢, ¢ be the

values of 0 respectively corresponding to y = Z —%, é —=—.0Onehas 1 —cjy =

Cal(1-2) 1+ay = Lol (1-g) 1—ey = ¢ flf/ (1- %) and

l4+ey= W (1 - (‘;—0) where r = ¢’ + g - . From the expression of g6, one

_ 1+A1x+A2x +...+A, +1x2”+l
gets 1 wé (1—e2202a1-x2) (1—e2 22 -x2)...(1—e2c2 )2y
by6 =46, £ay,...,8 xa, (§arbitrary). Thus

2n+1 __ _i —# _#
L+ Apx +... 4 Agprx _<1 A&)(l A(8+a1)>(1 )‘(3_0‘1)>m

X X
x(1l=-— )|l -
( )»(5+an)>( )»(5—%))

The differential equation (93) is written

bt which must be annihilated

Ja— =y = 12 /iy - e

and it shows that when x = £1, +1 or§ = £2, + ¢ the left hand side is 0. Thus,
for instance, § = 5,8 = —%, & = "’7 ¢ =—%andg =ci1fp(5) =efo (ﬂ>»
f = %(p(%’) = Z(p (’;) A solution of this system is g = f' = 0, f = %,

~

cy = R e = (p( ,) where k is arbitrary. Then y = k(p@ and 1 — w( =

o
2

L(1 - cw) (1 - A(%X_al))z (1 - A(%xi_m))2 . (1 - WY where
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p=(-— e2c2k2(x1 -xz)(l — eQCzkzozz ~x2) (1= ezczkzan -xz).

We obtain similar expressions for 1+ % and for 1 + ("JT@),> and, as in the Recherches,
2 o\ 7

l2 l/2
l—c%yzz (1—02x2)—2, 1—e%yz=(l—ez)cz)—2
P

where
)C2 )C2 )Cz
tz(“w%—al))(112(%—%))“ (“wz—an))’
x2 x2 .X2
f=l1-— l——]...]1

22 (“’7/ - Oll) 22 (“’7/ - a2> 22 (%/ - an)

Thus \/(1 — 3y (1 —ely?) = j::)’—;\/(l — ¢2x2)(1 — e%2x?) and Abel shows, as in

2dy
the Recherches, that 2 pri
The value of a is computed by comparing the limit values of % for x infinite

coming from d a/% and from y = % (x +2x) ¢>. Abel finds a =

is a constant a, so that the desired result is obtained.

dx 1—e2c202a-x2

(e2c?)" %)f‘al M. )y, He gives some other forms for y, as

X2 Xz X2
x(l _ W) (1 _ A2%)...(1 _ A2%)

y= a(l — 2202y - x2)(1 — €22 2 - x2) ... (1 — €2c?X2a, - x2)
1
= %(ec)z"bw Mo +OA(a; —60) ... Ao, + OOA(a, — 6)

where b = A2 - Ao ... A 2a,. Doing 6 = % and 6 = “’7,, he obtains
1 b 2
— = (="t (A (9 - a1> A (g - a2> A (g — an>) and
Cy k 2 2 2

1 b / / / 2
— = (=D"=(a @ -y | A @ —a ... A “ — oy, .
el k 2 2 2

As Abel remarks, the transformation defined by Jacobi corresponds to the case

in which o) = %, ¢ = c¢; = 1 and the theory explained in the Recherches to the
case in which
mw + m'e’
O =——
2n +1

withm+m’ even,m, m" and 2n+ 1 having no common factor. In both cases, &, = 2«1,
a3 = 3ay, ... ,q, = na,. Jacobi independently found these transformations. The
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.
more general transformation y = J; ,i;: "gg is obtained by composing this particular
. . _ [l
one with a transformation of the type y = s
A second case considered by Abel is that in which kK = 0 and &’ or k” is equal

to 1. Itis impossible that &' = & = 1 forif 3 (6+ 4 +% ) and 5. (0 + % + %)
are roots of y = ¥(x), sois A (9 + %‘“ + % — %“’) = M0 + w) and k is not 0. As

in the first case, let | — c;y = 0 for x = %.Then 1+cy= @ (1— 96 ),

o(%)
/2762 /2 2
1— c%y2 =& g/ 2'f (l — ((ﬂ‘”f) ) ) and
r 7

805 ) () ()
7 @8- p X A+ B) A6+ ay) A8 —ay)

- ) (1-—" 95
X( A(a+an>>( Ma—om) ©2)

where 8 = %‘“/ (resp. W) if k' =1 (resp. k¥’ = 1) and

p = Fecx(l — ezczkzal ~x2)(1 — ezczkzaz 'xz) (1= ezczkzan ~x2).

Abel takes § = &% in order to compute 1 — ¢fy* and he finds

/sz,z _g?
J1=ayr= lwit\/(l — 2x2)(1 — e2x?).
(%) rp

Now it results from (93) that /1 — e%y = _vB) rmdy is a rational function

/2, t dx
a (f%fﬂf(g/z

of x. If we impose that 1 — e% y? be annihilated by x = %A (“’%ﬁ), we effectively
find

2 2 /2
/elf —g x2 2
J1—ely?= 1-

X
- -
o()re ' 2(52)) U 2 (% )

x2

A2 (‘“T_ﬂ — an)

by doing § = :I:“’;—ﬁ in the relation (95). Then we find that ¢’ = ¢ f - gp(
erf-o(452) 0 = £0(3) = £o (%52). Asoluonis f =g =0,/ =

cl

x |1

IS

)
)

rog

o—p
P\ . . w w— ec
#’ which gives ¢; = kgo (5)’ e = k§0( Zﬁ_)’ y = ﬁ, a = :i:7 Other

!
solutions are obtained by composing with a transformation of the type y = %
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In the simplest case wheren =0 andcy =c =1, = %“’ + “%, the formulae are
y_(l+e)1+ 5, €] = %anda:l+e.

In the third case, k = 1 and one finds that 6 = ¢(0 + w) = —¢b so that
@0 = 0. Let us return to (94), denoting by % S’ (resp. %g/) the coefficient of x”~2 in
p (resp. ¢) and by F9 the function A20 +A%(0 + o) + ...+ A*(0 + i, —1). We have
ff—gy=—(f—gyFoand y = L *fm and we may proceed as in the preceding
cases with F9 in place of ¢0.

Abel states the general theorem for the first real transformation of arbitrary
order n:

dy adx
=+
\/(1 — )1 — e%yz) \/(l —x2)(1 — e2x?)

(96)

wherea = kA2.2.22 . 20200 o) — o (2332 (n—1)2)’ 1 =2l
X k(=) Zandy =Ko A0+ 2)A(0+2) . (0+ 2502).

With Legendre’s notation x = sing, y = siny and n very large e; be-
A/ 11— e251n2

n—1
> arctan (tanqp/l — e2)2 (%)).For(p =%, ¥y=n%= a%,sothat% = %f and

m=0

passing to the limit for » infinite, Abel finds

comes negligible and Abel writes, with an approximation ¥ = a f

1
o

¢ w
f / arctan (tan V1 — ez)\zx) dx
Y 1- 62 sin? ¢ ,

The order of the transformation, that is the degree m of the equation p — gy = 0
is the number of distinct values of A(6 + kjo; + ... + k,«,) and Abel shows that
m = niny...n, where, for each j, n; is the smallest strictly positive integer such
that A0 +nja;) =A@ +mioy + ... +mj_jaj_y) forsome my, ... ,m;_;. Thus,
when m is a prime number, v = 1 and m = n,. Abel states some theorems:

a) when the order of a transformation is a composite number mn, this trans-
formation may be obtained by the composition of a transformation of order m and
a transformation of order n;

b) the equation y = ¥(x) is algebraically solvable and its roots x are rational
1

functions of y and some radicals r"l r2"2 ,...,r" whereny, na, ..., n, are prime
numbers, nn, - - - n, is the degree of the equatlon and r{, ra, ..., r, have the form
+ t\/(l — C%yQ)(l — €2y?) with ¢ and f rational in y;

dy = dx has a so-

c¢) If the differential equation a
) . V(=) (1-e2y?) V(=22 (1-e2x2)

lution algebraic in x and y, a = u' + \/—pu where u/, u are rational numbers and
w > 0. There is an infinity of values for the moduli e, ¢, given by algebraic equations

solvable by radicals, for which u > 0.
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Recall that in the Recherches Abel doubted that these equations might be alge-
braically solvable. Kronecker (1857) gave a proof that they are solvable by radicals,
as Abel states here.

dy dx

d) If the differential equation =a
) q V=) (1-02y2) V(132 (122

1 — c? has a solution algebraic in x and y, a = VRS w'~/—1 where 1, 1/ are rational
numbers and p > 0. In particular, when a is real, it is the square root of a positive
rational number. Thus, when e% =1—¢?in(96), a = /n. Indeed the formula for k
gives y = 1 when 6 = 72, thus

where b? =

aw

B
) Ja-ma-ayy

One may write y = kAO-A (% - 9) A (27“’ - 9) LA (@ — 9) because A (9 + %)

2w _ 2 2(=Do 2
w MTox

— )‘(% _9>, so that y> = k*x2 ~ Now putting

1—e2)2 %XZ T 1—e2)2 (n—nl)wxg :

x = pa/—1 and y = z+4/—1 and letting p and z tend towards infinity, Abel ob-
1

tains § =a | —————

2 { (1—y2)(1—e3y?)

In the part of this memoir published in 1829, Abel gives another study of the

same transformation in the case in which O < ¢,¢; < 1 and e = ¢; = 1. Then % =

1 1
1 1 1
dx : o dx w
— % jsrealbut 4 = [ —& -2/ | [ ——& ____ —
Of (1—x2)(1—c2x2) 2 Of«/(lfﬂ)(lfcle) 2 lf (1-x2)(1—c2x2)

— aw —
= a5, whence a = /n.

1
"5’\/—1%, where % = f W, b = /1 — 2, is complex. Let us suppose
O A/ —X — X

that the differential equation
dy dx
=a
\/(1 — ) _c%yZ) \/(1 —x2)(1 — c2x?)

97

has a solution f(y, x) = 0 algebraic in x and y and define the function y = 1,6’ by
dy
Ja = -y

=do and X (0)=0.

The equation (97) takes the form d6’ = ad®, so that 6’ = & + a6 where ¢ is constant
and y = Ai(¢ + ab). Thus f(r;(e + ab), 16) = 0 identically in 6. This implies that
fhi(e4+2maw+al), L0) = f(r (e +mawi+ ab)L0) for any integer m. Then there
exists pairs of distinct integers (k, k') and (v, v") such that

Ar(e 4+ 2K aw + ab) = L (g + 2kaw + af) and
A(e +Vawi + af) = A (e + vawi + ab)
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or 2k'aw = 2kaw + 2mw; + m'w/—1, vawi = vawi + 2,ua)1 + o —

where m,m’, ., ' are integers, 5 = f .3 f dx
\/(1 xz)(l —3x2) 0 \/(1—x2)(1—b%x2)
by = /1 —c}. From these relations we draw a = meL ’2”]) Z2Ly-1 =
’ / 2 r 2
iﬂ_z_uﬂ/ ﬂ_l_ A T > 2;1,&)1 s 1 mm’ vy
VvV oo 1 and ) Vol e - Thus w2 T Al V2
2
[} 2
and —% —Lm o ag £ is a continuous function of ¢, these equations can
(28] 4 mp w
be satisfied for any c¢,c; only if m" = u = O orif m = u' = 0. In the
! /
first case we have ¢ = 24 = EZI 2 — Y 9 344 in the second case
Voo Vow O wy vVim o
—mo ] — _2nel /7 e _ _1nVaw i
a =51 = -2 1, o = i o Abel states that if (97) has

a solution algebraic in x and y, then either ;"r—‘l or ’g—l' has a rational ratio to . In the
firstcase a = § % and in the second case a = 8%«/ —1, with § rational. Both ratios

k, k' are rational for certain particular values of c, ¢, determined by % = kK,
Z’—ll = ]% and in these cases a = 8% + 8/%«/—1 with 8, 8’ rational.

In order to prove that these conditions are sufficient for the existence of an
algebraic solution to the equation (97), Abel observes that Aa = f (b% - ba) where

fa = +/1 — x2 is the function introduced in the Recherches. The expansion of fo in
simple infinite product then gives

(1 =0 =)0 =20 —2rH (A — 172 L

r0 =
T AT AU+ 2 A+ 2 )
_Aw(w—>meﬂ}—wm)a}—¢@w+a%—¢@w m—-” (98)
where A is independent from «, t = e’%, r=e =" and Y(x) = 1+ ¢ . From this

formula we draw

2 1
urx(a+g)x(9+-$>.“x<9+f;—w)

= AP (o) + ) — () — 8)— Y2y + ) — ...
w1 w1 w1 w1

where § = %9 and D‘;—‘l = % . On the other hand

rMa = Aﬂﬁ( )‘ﬁ(wl +Ot)— Y(wi —Ol)—

and, by comparison, we conclude that A, (2L6) = %A@ A+ 2)n(0+ 27"’)
A0+ ”n;la)) =y, algebraic function of x = A6 such that dy

Ja—ha-y

Zldo = 2L =

7 J1—x)(1-c2x2)

There are three cases to consider: a real, a purely imaginary and a complex with
@ _ Sk = K — LT L _mo
= /kk’ and o = - Inthe firstcase,a = - — and o = where w, v, m, n
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are integers. The equation (97) is satisfied by x = A(vawd), y = A (uw@0). Let ¢
be a modulus such that 2, = %%, where o’ and @’ are the periods corresponding
to ¢’. We have

’ oy A’ w n—1
A (v 0) = —A(uvo)d | uveod + — ) ... A | pvobd + ——o
A" n n

’

. /
and since & = 1
w m

K] C

e

, , o m—1
Mpvw'0) = — A (nva10)Ag (/wwlé’ + ;) s A | pve 6 + - wi | .
1

Finally

1 w n—1
—(ud)n (/MH— _)...,\ s+
An n n

w1 m—1
= —m,\l(usl),\l (1)81 n —) oo (e + o (99)
Al m m

where veof = § and puw 0 = &;. The left hand side is an algebraic function of
A(ud), so an algebraic function of x = A§ and, in the same way, the right hand side
is an algebraic function of y = X;§;. Thus we have an algebraic integral of (97). One
sees that A = Ji and A = ¢+ As an example, Abel explains the case in which
a=2and ‘”1 ; the equation (99) takes the form c/c-1 (8 + £) A (8 + 27“’) =

2w 2
clxlal.xl((sﬁ?l)ory\/:_ﬂ 329y

/1 2 32 — x1762)\zgx2'

3&;’

In the second case a = £ ZL/—1 and ﬂ = 2% with 1, v, m, n integers. Let us

ut x = Z“/_ so that ——2——— «/ ——%E __ where b = /1 — 2.
P V- Ja x2)(1 c2x?) «/(1712)(147212)

The equation (97) takes the form ———% = L@ d __ apd we are

Ja=y)(1=cy?) Voo /=22 (1-b222)
reduced to the preceding case, with the algebraic integral (99) where z = A§ =
\/,% and o replaced by @. For instance if ¢ = %«/—1 and ;—‘l =2%,(99) is

written /b - A8 = 1A ()21 (81 + %) or y\/V — = flb = -
cly x2—

In the third case a = L2 + ” ZL/—1 where w, v, ', v are integers and

Z_’;I] =k = kl, Z where k, k/ are ratlonal numbers. The two equations
dz Lt dx
and
\/(1—22)(1—6‘%22) vV ow \/(l—xz)(l—czxz)
dv /L @ dx

Ja =2 -cw) SV e (1 -1 - )

have algebraic integrals and our equation (97) may be written
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dy dz dv
= +
Ja-»a-aw)  Ja-2a-82)  Ja-w)a-dw

/=) (=) +u,/(1-2)(1-322)

which is satisfied by y = -2 , algebraic function of x.
Abel gives a translation of his general theorem in Legendre’s notations (which were
adopted by Jacobi).

The case where ¢; = ¢ corresponds to complex multiplication. Then a = 7 +
;’V/ Z2J-1= —/ — %ﬂ\/_l and 2 = U,/, ’;: Z = —2‘)—“& The multlphcatora is
real if m" = p = 0 but otherwise we must impose = = 1/-n "/ =k where k is

positive rational and we have a = § + §'\/k+/—1 where §, §' are rational numbers.
Doing o = % in (98), Abel obtains

1 — e—n\/k 1— 6—371\/]( 1 — e—Sn\/k

4/
Ve = 1+ e 7Vk 1 4 e 3nvk | 4 o5k and

_ 3 _ 5
l—e Floe VEloe VF

b =

3 St
([ S P S

Abel continued the explanation of the theory of transformation in a memoir pub-
lished in the third volume of Crelle’s Journal (1828), Sur le nombre des transforma-
tions différentes qu’on peut faire subir a une fonction elliptique par la substitution
d’une fonction rationnelle dont le degré est un nombre premier donné ((Euvres, t. 1,
p- 456-465). He puts

A2 =(1—-xH1 -2, A7 =1- )1 -
y

and supposes that the differential equation 7 = a— is satisfied by

_ Ag+Aix+...+ A2n+1x2n+l
o By+Bix+...+ an+1x2”+1

where 2n + 1 is a prime number and one of the coefficients Aj,41, Bonti
is different from 0. He recalls that, according to the Solution d’un probleme
général, when By,y; = 0, one has y = g%, ¢ = & and a = f where
2 2

p = Xx (1 — )\);_a> (1 — m), v = (1 — xR 2ax?) - (1 — A2 (na)x?),
e = "1 ( (2+a)...1(% +na))2, 5§ = c”+%()»a - AQ) -+ A(na))? and
mao+m'o’ [ 1y

2n+1 g+ey

/ ’ gtf g+c' f
where f’, f, g, g’ are constants such that (1 + /+f,x> (1 + £ f,x) (1 + o f/x)

(1 + g‘% f/f/ x) = (1 — x3)(1 — ¢’*x?). Thus, disregarding the signs, one finds 12

values for y and 6 values for ¢’ for each choice of «:

o= (m, m’ integers). Other solutions are given by composing with
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1 II 111 v \% VI
o g2 1 1-¢)? 1462 1-ei \? 1460 )2
&2 14+¢ 1—¢ 1+ei 1—ei

) ) 2 ) 2 ) N2 ; ) N2
a +2 Foe £ (1+8e)% Fp(1—e)7i (1 +e)% F5 (1 —e)

ip v . .

gV 5p ltevtdp 1—¢ vE£dp 14¢i vE3pi 1—gi vE8pi
y 1w §el 1—evFdp 14+ vFSp 1—ei vFSpi I4-ei vFopi°

e p v

This comes from the fact that the modulus ¢? is a modular function of level
2 in Klein’s sense: it is invariant by the group of 2 x 2 matrices congruent to the
identity modulo 2 operating on the ratio of the periods, and this group is of index 6
in SL(2,Z).

It remains to count the number of « leading to different solutions. If & and o’
lead to the same solution of type I, one finds that p’ = p, v = v and i—; = j:g.
From p’ = p it results that A%’ = A?(u«) for an integer i between 1 and n, thus
o = kw+ Kk o' + o where k, k" are integers. For such a value of o/, p’ = p,v' = v,
8’ = §,and ¢ = g and both solutions are effectively equal. Now when @ = 57~ there

2n+1°
exist integers k,  such that k(2n+1) &= um = 1 and one has ko + po = Zn“_’H . When
o= m‘;:_’flr‘“/ with m’ # 0, there exist integers &, i such that K’ 2n + 1) £m'pn = 1

and one has ko + k'« + po = ‘;;::f’ where v = k(2n + 1) &= pum. Thus the different

choices for a are 5%, 527, %’ %, e ‘”;ﬁ’i‘”, their number is 2n + 2.

The values of y of types III, IV, V and VI may be written in another way with
the help of the identities v —8p = (1 —x/c)(1 —2kix/c+cx?) (1 —2kyx/c+cx?)
oo (1 =2kyx/c+cx?),

v—8pv/—1 = (1 — x/=0)(1 = 2K, x/—¢ — cx®)(1 — 2kyx/—c — cx?) - -

x (1 — 2k, x5/—c — cx?)

and similar expressions for v + §p, v + §p+/—1, where k, = 1_Acf\’2‘f’;a), k; =

- :z_;fgf;u), A@B) = £/(1 — 220)(1 — ¢2220). When 0 < ¢ < 1, Abel explains that

the only transformations for which ¢’ is real correspond to o = 31 OF ‘5’;;“1’ and
that they are of type I, II, III or IV.

As we saw above, when 0 < ¢ < 1, wis real and @ = w + w+/—1 where @ is
real. Abel gives an expression of 1.6 = f (b (% - 9)) in infinite product

2 /N (1 —2¢%cos (2Z0) + ¢*) (1 — 2¢* cos (20) + ¢°) - --
)”0:_4618111(_9) _ 2n 2\ (1 — 243 2 6). ..
Je w /(1 =2gcos (2£6) + q%) (1 — 24> cos (2£6) + q°)

where ¢ = e o™ and computes ¢ with the help of this formula. If « = 5“—, he finds

2n+1°
202n+1) 4(2n+1) 2
8=2\4/q2”+1<1+q L+ ) .

1+ q2n+l 1+ q3(2n+1) e
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zm+2,u.w

The other values of « are of the form (0 < u <2n)and give

w1 \2 n L \4 2
. ; 1+<81q2n+1) l+(81q2n+1>
e =2y8 g7 : —= ...
148 |4 (all‘qm>
where 6; = cos ;= 2n+l + +/—1sin 7% 2n+l is a primitive (2n + 1)-th root of 1.

Thus the 2n + 2 values of ¢ are obtained by replacing ¢ in the expression

2
14+4° 14+¢* 144"
4 —
243 (FL 1 ) = eby

1 1 1 1
q2n+l’ q2T, 81q2n+1 s 8%q2n+1 e (S%”C] n+T
T 2 1—q4 2 .
The same substitutions in the expression 27 /g 1 q 7 give the 2n + 1

values of §. Jacobi independently discovered similar rules for the transformations
(1829).

In a very short paper published in Crelle’s Journal(vol. 3, 1828; (Euvres,
t. I, p. 466), Abel states the rule for the transformation of elliptic integrals
of the third kind. Let f(y, x) 0 be an algebraic integral of the differen-

d dx A-‘,—B)c2 dx
tial equation a2 . Then =
q V(=) (1=¢'y?) \/(1—x2>(1—c2x2> f 2 JU=x2) (=22

f A]q_'izzyz \/(1,_‘,2[)?1,6/2},2) + klog p where A’, B’, m and k are functlons of A, B,n
and prins an algebraic function of y and x. The transformed parameter m is determined
by the equation f(m, n) = 0. For n infinite, the integrals are of the second kind and
the rule for the transformation is

dx dy
A + Bx? =f A’ + B'y? +
/( D imoacan TP aomas ey

where v is an algebraic function of x and y.

8 Further Development of the Theory of Elliptic Functions
and Abelian Integrals

In the fourth volume of Crelle’s Journal (1829; Euvres, t. 1, p. 467-477), Abel
published a Note sur quelques formules elliptiques, devoted to the translation of the
formulae given in the the Recherches into Legendre’s notation in order to recover
results published by Jacobi. Supposing that ¢ = 1, the problem is to pass from the case
in which e is real to the case in which ¢? is negative. Abel puts Ao = f (% — ba)

where b = —-— so that x = Aw is equivalent to @ = [ ——2&
A/ 1+e2 0 A (1=xH(1-c2x?)
c= and b = /1 — ¢2. One has

A/ 1+¢2
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1

- U
) V= x2)(1 = c2x?) 2 ) Ja —x2)(1 — b2y

Abel auxiliary functions Mo = /1 — A2a, M'a = /1 — %)%« to play the
roles of cosama, Aama in Jacobi’s notation. One has Vo = ¢ (% — ba), Vo =
bF (— — ba). As in the preceding papers, Abel uses the expansions of fo, g and
Fa in simple infinite products to obtain expressions for A6, A’6 and 1”6 (cf. (98)):

1 — )02 1— ,021"2 1— p—2r2 1— p2r4 1 — p—2r4

L+ 021+ 022 1+ p 22 1+ p2r4 1+ p 2747
-2,3
r

A0 =A
20 1=pr 1—p2r 1—=p*31—p
1+p21+p2r21+p72r21_’_,02’-41_‘_,072,-4 ’
20 1402 14p72r 14027 14 p7 %3

2No=A

)\,//GZAU ) 100
1+p21+p2r21+p72r21+p2r41_|_IO724 ( )
where,o:e_f;Z rze_:?//” ﬂ’:?# E/zf%dieand
T2y Vi=asinze” 2y J1-p2sinZe
\/A:(1+r)(1+r3)...,
(1=rd=r}---

A+ (1 + (1419
=P =r)y1=r5).-
A+rHA+rH1 470

A= A+rA+rHA+7r3)--- (101)

JA =

Doing § = & + Z'i in (100), one obtains p* = —r and

i Vise 1 A+nA+Ha+r7 ..\,
A0 = (7) _A< > = A2,

e c A=A =r)H{1=7r5...
wi ,b_ 1+r 1+r 2

Thus A = J LA = il‘ﬁ\/% . In a similar way, doing 6 = “’7/ one obtains p> = r and
2
'O =b=4A"/r (% ij:‘: . ) =4A"Jr- A" sothat A” = 2*/7;;. These values

compared with (101) give

%2 1—r1—r31—r5”.’
14+r14+r3149°

ﬁz¢2%1+r21+r41+r6.“’
c

1—r1—=r31-17°
Vb= sz

l+r 1+ 1 4,0
Fl+r3 14+,

(102)
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The limit value of % for& — O is % and, comparing with (100), this gives
w’ (1 —rz)(l—r4)(1—r6)-~-
*%\/;z A d Frhd £ o
\/F_ A+NA=r)A+rHA =7y .-
7 (= +rHA=r)A+r)---
=1+ +r)A+7r)--)?
x(IL+NA+)A+r) - xA=n1=rHA=r)---.

Abel puts P = (1 + r)(1 + A +r5) -..and P" = (1 +r2)(1 + r4)(1 +7r0) ...
so that
1

P =1 +nA+r)(1+r%)-- (l—r)(l—rg)(l—rS)

and /¢ = le 7 Vb= /2¥r %. From these relations, he draws

VB 1
24 /o -
P=32 b“, P_%%%, (103)
_(1+r)(1+r2)(1+r3)(1+r4)
I\[\[
2%

Now putting ¢ = e~ «/ " so that logrlogq = 72,0 = o 5+ “’7/«/—1 + %x«/—l
and exchanging b and ¢, Abel obtains from (100)

= g == =) =

, one of the formulae published by Jacobi.

= sinx
Va 1 —2gcos2x + g% 1 —2g3cos2x +
q q q q°

\/7 1 +2¢%cos2x 4+ g* 1 +2¢* cos 2x + ¢
—x) =2 ﬂcosx cee
—2gcos2x +q* 1 —2q3 cos2x + ¢°

N gx Y 1+2q0052x+q 14243 cost+q
T 1 —2gcos2x +q2 1 —2g3cos2x +q°

K(a)/ ) 2 1—2qzcos2x—i-c141—2q4cos2x—|-q8

(104)

By comparison with Jacobi’s formula for Aama, Abel finds

1 + 2q cos 2x + 2g* cos 4x + 2¢° cos 6x + . ...
1 —2g cos2x + 2g* cos4x — 2¢g° cos 6x + . ..

(1 +2q cos2x + g*)(1 +2¢> cos 2x + ¢®) (1 +2¢° cos 2x + ¢'%) . ..
- 2g cos2x + ¢2) (1 — 2¢3 cos 2x + %) (1 — 2¢° cos 2x + ¢10) ..."

The logarithms of (104) are written
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o 1 1o’ .
logh| —x ) =log2 — —~logc — ——m + log sin x
b4 2 4 o

12 (cos2x—0— 4 L eosan—T 4 Looser9 4
cos 2x — cos 4x — cos 6x ).
I1+qg 2 1+¢g%> 3 1+43

ey 1 1 1o’
logh" | —x :10g2+§10gb—Elogc—z—/n—klogcosx
bid 1)

12 (cos2r—9 4 Leosar—9 4 Leosox—T
COS =X — COS4x — COS OXx .
1—q 2 14+4¢> 3 1—¢3

(@ 1 q 1 q°
log 1 <;x>—Elogb+4(0052xl_—qz+gcos6x1_—qﬁ+... .

S =
N—
(e}
/'\
»Q
+
W=
‘Q
f=)
+
=
&
3
+
—
&
=
o

For x = 0, this last formula gives log (
the first one gives

1 1o’ q 1 ¢ 1 4
log(—)=5—m—2log2+4 - = 5+ 3 3
c 2 w l+qg 2144 31+¢

3

1/ 1
l—rr2 + 3 lir + §
and F («%) in simple series (Recherches, formulae

5

5+ - ) according to (102). From

which is also equal to 8 (

the expansions of ¢ (%), f («%
(86)), Abel deduces

o 7
A (—x) = —Jq (smx + sin 3x >+ s1n5x s+ )
T —q
v (< J o+ cosd 9 cossi—T 4
—x ) =— cos oS 3x——— + cos
nx q x xl g xl e
PR r —Xx }’3 _ r3—3x er _ rS—Sx
:cw< l+r 147 + 1+7° +”')’
)\” Cl)/ 27T r* + rlfx r3x + r373x N er + r575x N
—x ) =— — ).
T w’ 1—r 1 —r3 1—17r5

Let ¢’ be a modulus (between 0 and 1) such that there exists a transformation
from the elliptic functions of modulus c to those of modulus ¢, and let ", @”, ¥/, ¢’

be associated to ¢’ as o', @', r, q are ass001ated to c¢. The characterisation stated in

. ’ \ z. 7 . '/
Solution d’un probleme général is — = = © where n, m are integers, or ¥’ = rm,

m
q = q%. For instance, let us take ¢ = \/I, so that @’ = @ and r = ¢~ ™. Any
admissible value of ¢’ is given by
1 —e T —e 31 | — 07

1+eH7]+ e—3/u‘r 1+ e—S,WT o

27 4
_
= \/26 81

Yo =

=g

l4+e wl4e n 14+e

=g

—z i -
I+e " 14e v 1+4e
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where u is a rational number and such a ¢’ is expressible by radicals. Another
example is that in which »" = ¢ or ¢/ = b; then 0’ = @/, @” = «'. In this case

/ "

o _ o _no o _ [m _ B e T T o B
o o T mw and o n \/,bL Thus \/E = ]+L’7”\/“ ]+673”‘/”’ 1+6757T‘/M N
5z

b4 3
4 —e VI ¢ VI 1_¢ VK
and Vb = 1ze Y 1e Y2 1oe Y2

I4e VH |4 Vi 14 Vi
Atthe end of this paper, Abel deduces the functional equation for a theta-function

from (103). Exchanging ¢ and b and r and ¢, he obtains (14+¢)(14+¢*)(1+¢°) --- =
%% and comparing with (103)

1 3 5 1 3 5
=AU +r)A+7%) = 1+ U +¢) (1 +4%) -
r q

T i

whenever r and ¢ are between 0 and 1 and related by logr - log g = 7%. He recalls
some other results due to Cauchy (1818) and to Jacobi (1829).

In a second paper of the fourth volume of Crelle’s Journal (1829), Théoremes
sur les fonctions elliptiques ((Euvres, t. 1, p. 508-514), Abel considers the equation
©(2n 4 1)0 = R of which the roots are x = (0 + ma + uB) where ¢ is the elliptic
function of the Recherches, a = zfil ,B= 2%13"1 and m, pu are integers. He proves
that if ¥0 is a polynomial in these roots which is invariant when 6 is changed into
6 + « or into € + B, one has

Y0 = p+qfQ2n+1)0- F2n+ 1)6

where p and g are polynomials in ¢(2n + 1)6, of respective degrees v and v — 2,
v being the highest exponent of @6 in 6. Indeed, by the addition theorem (73),
(0 + ma + up) is a rational function of ph and f9 - F9. Since (f0 - F)> =
(1 — A2¢*0) (1 + €2¢?0), one has

Yo = Y1 (p0) + Y2(¢0) f0 - FO

where ) () and v, (p6) are rational. They are respectively given by

1
Y1 (ph) = 5(1&9 + Y (w—6)) and
1
V2@ 10+ FO = (90 — (@ — 0)). (105)

The invariance of Y6 by 6 +— 6 + « or 6 + B implies that ¥ (p(6 + ma + upf)) =
Y1 (¢0), so that ¥ (¢0) is a rational symmetric function of the roots of the considered
equation. Thus v; (¢f) = p rational function of p(2n 4+ 1)0 = y. If y = p(2n + 1)§
is a pole of p, (105) shows that some § + ma + B or some w — § + mo + up is
a pole of ¢, but then (2n + 1)§ is also a pole of ¢, which is absurd. On the other
hand, f2n+1)0 = f0-u, F(2n+ 1)6 = FB - v where u and v are rational functions

of ¢0. It results that % = x(¢b) rational function of ¢f also equal to

% % according to (105). Thus x(¢0) is invariant by 6 — 6 + o or 6 + 8
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and one proves as above that is it a polynomial ¢ in ¢(2n 4 1)6. Abel computes the
degrees of p and g by considering the behaviour of {0 and ¥(w — 6) when ¢0 is
infinite.

When v =1, pis of degree 1 and ¢ = 0, so that 0 = A 4+ Byp(2n + 1)0 where

2n  2n
A and B are constants. This is the case for Y0 = > > 7(0 + ma + uf) where
m=0 pu=0
76 is the product of some roots of the equation and on:a finds that A = O when the
number of factors of 76 is odd whereas B = 0 when this number is even.

In the same way, Abel obtains that if Y6 is a polynomial in the quantities
f(O + ma + pp) (resp. F(6 + ma + ppf)) such that () = (6 + «) = ¥ (6 + ),
then Y0 = p+qe(2n+1)0- F2n+ 1)0 (resp. p+qp(2n+1)60 - f(2n + 1)0) where
p and g are polynomials in f(2n + 1)0 (resp. F(2n + 1)60) of respective degrees
v, v — 2, v beeing the highest exponent of f8 (resp. F8) in 6.

As an application, Abel deduces a formula established by Jacobi (1828) for the

4n2+4n

division of elliptic integrals: ¢ (525) = 57 > V/Pm + 4 JO - FO where p,,
0

(resp. g,,) is an odd (resp. even) polynomial in @0 of degree 2n + 1 (resp. 2n — 2)
and p2 — ¢% (f0)*(F9)? = (¢*0 — a?)**! where a,, is a constant.

A third memoir of Abel in the volume 4 of Crelle’s Journal (1829) is
a small treatise on elliptic functions, titled Précis d’une théorie des fonctions el-
liptiques (Euvres, t. 1, p. 518-617). He uses the following notations: A(x,c¢) =
+/(1 = x2)(1 — c2x?), w(x, ¢) = f #Xw) (integral of the first kind), @y (x, ¢) =

x2dx
A(x,c)

(integral of the second kind) and

d
(x, c.a) = / % (integral of the third kind).
1—%) A, ¢
a

The general problem dealt with by Abel is the following: “To find all the possible
cases in which one may satisfy an equation of the form

a1 (xy, c1) + arw(xz, ) + ... + a,@w(x,, ¢;)
+aowo(x], ) + ahmo(xh, ¢5) + ... + o, wo(x,,, ¢))
o TI(xy, ¢, ar) + oy (x5, &5, ax) + ... + o TI(x), ¢, a,)
=u-+ Ajlogv; + Azlogv, + ...+ A, logv, (106)

. / / . " v " .
where oy, a, ..., o, 0, L0 A, N Ay, Ay, ..., A, are con-

stant quantities, x1, X2, ... , X, X{, X5, ... , X5 X{, x5, ..., x], variables related by
algebraic equations and u, vy, vy, ... , v, algebraic functions of these variables.”
This problem is attacked by purely algebraic means, that is without the use of
elliptic functions and their double periodicity.

Here are some results announced in the introduction: “ If f %, where r is an
arbitrary rational function of x, is expressible by algebraic and logarithmic functions

and by elliptic integrals ¥, ¥, ¥, ..., one may always suppose that
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rdx , y
/ = pAGL )+ ap(y) + d Y1) + Yo (v) + ..

A(x, ¢)
+ g Ax, ¢ + gy Ax, ¢
+A110gql 61} (x, 0) )1 9 qg (x, 0)
q1 — q1Ax, ©) g2 — 4y A(x, ©)
where all the quantities p, g1, ¢2, ..., 4}, g5, ..., ¥, Y1, Y2, ... are rational func-

tions of x.” In this statement, A(x, ¢) may be the square root of a polynomial of any
degree.

“If any equation of the form (106) takes place and one designates by ¢ any one
of the moduli which figure in it, among the other moduli there is at least one ¢’
such that the differential equation % = sﬁ may be satisfied by putting for y
a rational function of x, and vice versa.”

The second part of the memoir was not written by Abel and we have only the
statement of its principal results in the introduction. Abel supposes that 0 < ¢ < 1

and introduces the elliptic function 16 inverse of @ (x, c), with its main properties:

1
double periodicity, with the fundamental periods 2z, wi given by 5 = i %,
5 Al

1
5 = of ﬁ, determination of its zeros and poles, equation A(6’ + A — ) =

2 2 . .. . . .
%, expansion in infinite product. He proves that if the equation (16)*"* +

a1 (A2 4a (A0)>4ayg = (borhO+bi (A0 +. . .+b,_ (M)A, ¢) is
satisfied by 6 = 6, 6,, ... , 6, such that 2201, 220, ..., A20,, be different between
them, then L(6; + 6, + ...+ 65,) = 0and —A(62,) = 201 + 0+ ...+ 6, 1) =
m. This statement gives a general theorem for the addition and its proof
is given in the first part.

The roots of the equation of division of the periods are related by remarkable

li??ar relations, where § = cos 221 1 ++/—1sin 231 g is a primitive (2u 4+ 1)-th root
of 1:

Y 2mow 45 2mw + wi 4 5% 2mw + 2wi
2u+1 2u+1 2u+1

5% 2mw + 3wi bk, 2mw + 2uwi
2u+1 2u+1 ’

02 mwi n 5 2w + mwi n 5245, 4o + mwi
2pn+1 2pn+1 2u+1

eI 6w + mwi =110} dpo + mwi
2u+1 o 2+ 1 '

Sylow gave a demonstration of these relations in 1864 and he explains how to deduce
them from the theory of transformation in the final notes to Abel’s Works. He also
reproduces another proof communicated to him by Kronecker in a letter in 1876
(Euvres, t. 11, p. 314-316).

If there is a transformation of [ &

Ao (With0 < ¢ < 1) into ef % (with ¢/
arbitrary) by putting for y an algebraic function of x, then ¢’ is given by one of the
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. A+ (1+gHU+68) 4 l—q -4} 1-43
following formulae: ¢’ = /2.8/q] — T T4 & loa L...
8 V2 (gD (+g7) (1+q7)- 1441 1447 144

where q; = g"* = e(’“%ﬂ”)”, W, i rational numbers.
As in the Solution d’un probleme général, Abel obtains a statement concerning
the rational transformation of a real elliptic integral of modulus ¢ into another of

modulus ¢/, with 0 < ¢,¢ < 1. The periods @, w, @', @ must be related by
o _no
m w

o= where n’, m are integers and this condition is sufficient, the multiplicator
being e =m % Abel proposes to determine the rational function of x expressing y
by means of its zeros and poles.

When ¢ may be transformed into its complement b = +/1 — ¢ (singular mod-
ulus), Z = \/% and % = \/nﬁﬁ Abel says that c is determined by an
algebraic equation which “seems to be solvable by radicals”; he is thus doubtful
about this fact, later proved by Kronecker. In the final notes (Euvres, t. I, p. 316—
318), Sylow gives a proof of this fact by reduction to the solvability of the equation
of division of the periods. Abel gives an expression of /c by an infinite product.
He also state that two moduli ¢ and ¢’ which may be transformed into one another
are related by an algebraic relation and that, in general, it does not seem possible to
draw the value of ¢’ by radicals. But it is possible when ¢ may be transformed into its
complement. According to Abel, all the roots of a modular equation are rationally
expressible by two of them, but this statement is mistaken; they are expressible with
the help of radicals by one of them.

Abel gives an expression of A6 as a quotient of two entire functions g6 =
04+ab®+ad0+...and f0 = 1 4+ b'0* + b"6% + ... related by the functional
equations

@0 +0)p(O' —0) = (9019')* — (90 f0')* — (90’ f0)*,
fO +0)f(0 —0) = (f019')* — (p0gh')*.

These functions are similar to the al-functions of Weierstrass, later replaced by o.
As we have said, Abel communicated the functional equations to Legendre, saying
that they characterise the functions ¢ and f (see §1).

Abel adds that most of these properties are still valid when the modulus c is
a complex number.

The first part of the memoir, the only one written and published, is divided in
five chapters. In the first one (p. 528-545), Abel deals with the general properties
of elliptic integrals, beginning by Euler addition theorem proved as a particular case
of Abel theorem: “Let fx and ¢x be two arbitrary polynomials in x, one even and
the other odd, with indeterminate coefficients. Let us put (fx)> — (px)*(Ax)> =
A = xD)(¥* — x3)(x* — x3) ... (x* — x%.) where A does not depend on x, I say
that one will have

) + Mo + Mxs + .+ My = C — — 1og 14794 Ad
X X X x, =C — ) ,
: z } a 2Aa gfa—<pa-Aa

(107)

a denoting the parameter of the function ITx, such that ITx = [ ﬁ. The
~5 )

quantity C is the integration constant.”
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When all the coefficients of fx and ¢x are independent variables, x1, x2, ... , x,
are all distinct and one has ¥x = (fx)? — (¢x)?(Ax)> = 0 and fx 4+ gxAx = 0
if x is any one of them. Let § denote the differentiation with respect to the variable
coefficients of fx and px. One has

Vx - dx 4+ 2fx - 8 fx — 2¢x - 8¢x - (Ax)* = ¥'x - dx — 2Ax(px - 8 fx — fx - S¢x)

=0,
thus [Tx = [ 2@SA—Jx8e) q4nq
N
Ixy + ITxy + ITxz + ... + Tx,
Ox Ox Ox
=/ - + = +ob——E—— ] (108)
e T

where 6x = 2(px - 8 fx — fx - 8¢x) is a polynomial in x, of degree less than that of

¥x. Therefore, the right hand side of (108) is equal to | 2“1% =af m% =

C — 55 log :;Zfig:ﬁz. This proof is valid whenever Ax is the square root of an even
polynomial in x, as was seen in the publication of Abel theorem for hyperelliptic
functions in the third volume of Crelle’s Journal (see our §5). It is naturally extended
to the case in which the coefficients of fx and ¢x are no more independent and some
of the x; may be equal. Taking a infinite, /Tx is reduced to the integral of the first

kind @x and the logarithmic part vanishes, so that

wx1 +wxy + ...+ ox, =C.

An expansion of both members of (107) in ascending powers of 5 gives, by com-
parison of the coefficients of alz wox| + wox2 + ... + wox, = C — p where pis
an algebraic function of the variables.

As in the general case of Abel theorem, one may choose xi, x2, ..., X, as
independent variables and determine the coefficients of fx and ¢x in function of
them. The . — m quantities x3, |, X2 5., . .. ,xi are then the roots of an equation
of degree 1 — m and they are algebraic functions of xy, x7, ... , x,. The minimum
value of it — m is 1. When u = 2n is even, one may take

fx=ag+aix’> +ax*+ ..+ a1 x4+ 17,
ox = (by + bix> + box* + ...+ by_ox™ Hx,
(1) = (0> (1 = x*)(1 = x?)

= =D —xd) .. (= x5, =y, (109)
fxi+ox1 - Axp = fxo+@xo- Axp = ...
= X201 + Q) - Axzyy = 0. (110)
The linear equations of the last line determine the coefficients ag, ay, ... , a,—_1,
by, by, ..., b,_> as rational functions of x, xo, ... , X2,—1, Axy1, Ax2, ... , Ax2,_1.

For x = 0, (109) gives
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ao
2 _ 2.2 2 .2
ay = X(X;...X5,_y~ whencey = —

X1X2 ... X2pn—1

Since fxz, + @xa, - Axp, = 0, putting Ax,, = —Ay one has Ay = % a rational
function of xp, xp, ..., Axy, Axp, ... as is y. If, in (109), we put x; = x, =
... = X2,_1 = 0, the right hand side becomes divisible by x**~2 and we must have
a=a =...=ay,_; = by =b; =...=b,_» = 0. Thus we obtain x* =
x*72(x* — y?) and y = 0. Abel shows that if Ax; = Ax, = ... = Axy,_; = 1 for
X; =x3 =...=x,-1 =0, then Ay = 1. Indeed, for x|, x5, ... , xp,— infinitely
small, the equations (110) reduce to

X 4 ay x4 by x4+ box +ag =0, (111)

with 27 roots xi, x2, ... , Xp,_1 and z such that ay = zx;x; - - - x2,_1. Thus z = —y
and consequently

y2n + an—l)’2”72 +...+ a]y2 +ap = (bp + blyz +...+ b,l_2y2”74)y’
relation equivalent to Ay = 1. Since the sum of the roots of (111) is 0, we have
y=x1+x2+ ...+ x5

for xi, x2, ..., Xp,— infinitely small.
It is also possible to take fx odd of degree 2n — 1 and ¢x even of degree 2n — 2.

In this case, one finds that - = ——%
cy X1 X2 X2p—1

When 1 = 2n + 1 is odd, let us take
fx = (ap+ax* +arx* + ...+ a1 x 2 +x")x and
@ox = by + b1x* + box* + ... 4 by 1x* 72,

(0 — (@021 = xH(1 =A%) = (P =2 = x3) ... (7 — x5 ) (P — D),

S+ @x1 - Axy = fxo +@xa - Axy = ... = fxou + @xan - Axgy = 0.
As in the preceding case, one obtains y = xw;‘?.xz and Ay = %. For
X1, X2, ..., X, infinitesimal, Ax|, Ax,, ..., Axy, being 1, one has y = x| + x» +

...+ x2, and Ay = 1. One may also suppose fx even and ¢x odd, and then
1 _ by

cy T oxpxp..xa, "
Whenn =1, fx = apx + X3, ¢x = by where ag and b, are determined by the
equations

apx; + x]3 + boAx| = apxr + x% + boAxy, =0

3 3 3 3
. . _ % Ax;—x1Ax XX XXy
which give ap = Tan i 20 = Sanman Then
by X2 — x? X1Ax2 + X2 AXxy
_ 1 2 _

X1X2  X1AXxy2 — xpAxy 1— c%cfx%
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One may verify that (agx +x3)2 —b(%(l —xH(1=c%x?) = (x2 —x%) (x2 —x%)(x2 —yz).
The addition theorem takes the form @wx; + wx; = @y + C, woxy + woxr =
woy — x1x2y + C,

3
. A
My + My = My — a log apa + a’ + x1x2yAa
2Aa apa + a3 — x1xyAa

+C,

agy+y? _ ap+y?

and Ay = TERETITR

When xi,x2,...,x, = x (w = 2n — 1 or 2n), the coefficients ag, ay, ...,
by, by, ... are determined by the equation fx + ¢x - Ax = 0 and its first © — 1
derivatives. Letx, = —;’79 foru =2n—1, f—,‘l for © = 2n be the corresponding value

of y, such that wx,, = C + pwx. One has w(x,4,) = C + wx, +@x,, = C+wy

Xm AXp+Xp Axm __ yAeteAy

ify= and this equation gives x,,y,, = 22,2 where e is a constant.

1—c2x%x2

mp
Letting x tend towards 0, one sees that x,,, is equivalent to (m + p)x as is y, so
thate = 0, Ae = 1 and

XmAXy + X, Axpy,

Nk =TT c2xpx2 (112)

In the same way, x,,_,, = %. For m = 1, this gives x,41 = —x,_1 +

:i‘z‘ifziﬁ and it is easy to deduce by induction that x5, 41, ij&“, Xj—ﬁ; and Ax,, are

rational functions of x. One has x4 X, —m = %; form = p — 1, this gives
Xopo1 = %j;c ;l;il . On the other hand, (112) with m = u gives x5, = zl’iﬁjg.

Let us write x,, = Z—l’:, Ax, = ;Lé where pi and ¢, are polynomials in x

. .. 2 T
without any common divisor. We have % = 2P’ whence P2 = 2Duqul s
"

n I

Q@ = qf; - pi, for these expressions are relatively prime. On the other hand,

2 2 2.2
Py Ppdy\— b, I . . . .
Pl — Jul 1kl which s an irreducible fraction. Indeed the simultaneous
2p—1 Dy 1= PuPp—1

: 2 2 2,2 _ 2.2 _ 2.2.2 _ e 2 — o2
equations p, g, | — 4, P,—1 = 4,9,—1 — ¢ PP, = 0 would g;ve;cu =X,
2.2 .2 . Xp Axy 14X, -1 Axy, A1

and 1 — c7x;x = 0. Since xy,—1 = =

nru—1 2p—1 l_czxﬁxi—l XpAxy =Xy 1 Axy”’
should have x,Ax,_; = x,-1Ax, = 0 and this is absurd for xi = % Thus

Pt = +(PAGL_| — GAPA_))s Q1 = qaqh_; — ¢ pLpl,_; and, from these

relations, Abel recursively deduces that p,,_; is an odd polynomial in x of degree
(2 — 1)2, pa,, = p'Ax where p’ is an odd polynomial of degree (2u)? — 3, g, is
an even polynomial of degree > — 1 (resp. *) when s is odd (resp. even). More
precisely,



The Work of Niels Henrik Abel 149

2
Pou—1 = XQu— 1+ Apx® + ... 4 A, x@D7),
2
pou = XAXQu + Box® 4 ...+ By x0T,
e
Gou—1 =1+ A}‘x4 + ...+ Aézu—l)z_lx(zu n>-1
2
Q=1+ B)‘x4 + ...+ let;ﬂx(zu) )

In his second chapter (p. 545-557), Abel considers an exact differential form

yidxy + yodxy + ... 4 y,dx, (113)
where the variables xi, x2, ... , x,, are related by some algebraic relations in number
less than p and yy, y2, ..., y, are algebraic functions of them. He supposes that its

primitive is of the form

u—+ Aylogvy + Axlogvy + ...+ Ay logv,
+ a1yt + oyt + .o oYty (114)

where Ay, Ay, ..., Ay, a1, a0, ... ,0,areconstants, u, vy, Va, ... , Uy, 1, b, ... , Iy

. . _ 0'dx - . . .
algebraic functions of xp, x5,...,x, and ¥,x = A,y isan elliptic integral of

modulus ¢,, (1 < m < n), with A,,x = £/(1 —x2)(1 —Zx2) and 0’ = 1, x?

or lxz. Let us suppose that xi, x, ..., x, are independent variables and that

-z
a
Xm+1, Xm42, - - - » X, are algebraic functions of them. Abel introduces an algebraic

function 6 such that

U, V1, V2, ..., Uy, t, 1, ...ty A1(t1), A2(2), ..., Ay (L) (115)

are rationally expressible in 0, x1, X2, ..., X,, Y1, Y2, ... , y,. He says that a con-
venient linear combination of the functions (115) has this property. In other words,
Abel uses what is now called a Galois resolvant, which is most remarkable. Let
V = 0 the minimal algebraic equation satisfied by 6, with coefficients rational with
respect to X1, X2, ... , Xu, Y1, Y2, - - - » Yu, and let 8 be its degree. Writing that (113)
is the differential of (114), one obtains a relation

pi1dxy + padxy + ... + pmdx, =0

where py, po, ..., py arerational functions of 0, x, x2, ... , X,, ¥1, Y2, ... , ¥, and
this implies that py = p» = ... = p,, = 0. These last relations are still verified
when 6 is replaced by any one of the § roots 61, 65, ... , 05 of V = 0 because it is an
irreducible equation. It results that

8 [(yidxy + yrdxo + ...+ yudx,) =U + ArlogVi + ...+ A, logV,
Far (it + ]+ )
A (Yt + Pty 4 Yt (8))
where U = u’ +u” + ...+ u® is the sum of the values taken by u when 6 is succes-

sively replaced by 61, 6, . .. , 65,1og V;, = log v}, +log v/ +. . .+log v'? is the anal-
ogous sum associated to logv,, and ¢/, t” t©® are the values taken by t,,. Now,

m>"m?> " >"'m
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by the addition theorem for elliptic integrals, ¥, ¢, + Yty +. . .+ Yt (8) = ¥ T+
p+Bilogqi+Bylogg,+...+B,logg, where T,,, Ay Ty, p, q1, ¢, - - . , gy arera-

tional functions of £, £/, ... , ) A, (£, ), Ap(tl), ... , Ay (t?) and consequently
of 01,0, ... ,6s,x1,x2, ..., %4, Y1, Y2, ... , Y. But since they are symmetric with
respecttody, 0,, ... , 65, they arerational functions of x1, X2, ... , X, Y1, Y2, -+, Yu

as are U and the V,,,. We finally obtain a relation of the form

8 [(yidxy + yadxz + ... + yudxy
=r+A'logp +A"logp” + ...+ AP log p®
+ a0 + b + ..+ a0,

where § is an integer, oy, &y, ..., «, are the same as in (114), A’, A”,... are
constants and 61, A{(0)), 62, Ar(02), ..., 6, An(6,), 1,0, 0", ..., p® are ratio-
nal functions of x1, x2, ..., X, Y1, Y2, -+, Yu-

A particular case concerns the differential forms (113) of which the primitive is
of the formu+ A; logv;+ Az logv,+. ..+ A, log v, where u, vy, va, ... , v, are al-
gebraic functions of x1, x5, ... , x,.. Then one may suppose that u, v, v, ... , v, are
rational functions of x, xo, ..., X,, ¥1, ¥2, ... , yu. In a footnote, Abel announces

a general theory, based on this result, for the reduction of integrals of algebraic
differential forms by algebraic and logarithmic functions.
Applied to elliptic integrals, the preceding theorem takes the form: if

f <a1r1 dx; + “rn dx) + ...+ Z/t”u dxu)

A1x1 Az)Cz M
=u+ Aylogv; + Aylogv, + ...+ A, logv, (116)
where ry, 2, ..., r, are rational functions and u, vy, vy, ... , v, are algebraic func-
tions of xy, x2, ... , x,,, one may suppose thatu, vy, v, ... , v, are rational functions
of x1, X2, ..., Xy, A1x1, Axxa, ..., Aux,. From (116), we may also conclude that

there exists an integer 6 such that

Say Xy + Soaaxy + ...+ Sy YimXm + A1 Yim161 + o+ o V6
=r+A'logp +A"logp" + ...+ A% log p®

where 1//jx = / Ar_]l»xdx and 91 s Am+191, 92, Am+292, ey Qu_m, A/LQ,U.—WU r, p/, ,0”,

..., p® are rational functions of x, x2, ... , Xm, A1X1, A2Xa, ..., ApXy,. When
only one elliptic integral v, x is isolated, this gives

S Ymx = —a 1101 — by — ... — 1 Y 10m—1 — S 1 Y101 — - -
—a, U0, 41+ Allogp 4+ A"log p” 4 ... + AP log p® (117)

where 0y, A,,1101, 62, Api26s, ... 1,0, p", ... are rational functions of x and
A, x, that is of the form p 4+ gA,,x with p, g rational in x.
Whenx;i =x, =...=x, =xand¢; = ¢, = ... = ¢, = ¢, one obtains the

following theorem: if there is a relation
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awx + agwox + o I x + o lhx + ... +o,ll,x
=u-+ Ajlogv; + Aylogv, + ...+ A, logv,

where u, vy, va, ... , v, are algebraic functions of x, one may suppose that they are
of the form p + gAx with p, g rational in x.

Differentiating (117) we obtain a relation of the form P + QA,,x = 0 which
implies P = Q = 0 and therefore P — QA,,x = 0. When the sign of A,,x is
changed into the opposite, the 6; take new values 0} and we have —do,, ¥, x =
— Y oy + v where v designates the algebraic and logarithmic part. It results that
280 Ymx = > a(Ph — Yb) + v — v’ where, by the addition theorem,

Yo' — o =y ="

%, v” denoting an algebraic and logarithmic function. Now 6 =
—C

p+ qAnux and AG = r + pA,,x where p, g, r, p are rational functions of x and it
results that’ = p—qA,,x, A0" = r—pA,,x and that y = rA,,x where ¢ is a rational

function of x. Then itis easy to see that Ay is arational function of x. One may replace

ybyz= ifjj;f‘g where e is a constant because vy and ¥z differ by an algebraic

if y =

and logarithmic function. For e = 1, z = lj—gyz is a rational function of x and

Az = l‘fc—_ziz y has a rational ratio to A,,x. We have 28¢,, ¥,,x = >_ oz + V where
V is an algebraic and logarithmic function. Then V. = u+ A logv; + Az log va +. . .
where u, vy, va, ... are of the form p + gA,,x with p and ¢ rational in x.

Taking m = p, we obtain 280, ¥, X, = a1 Y121 +oynza+. .. 4o 1 ¥u—12,—1
+ V and we may eliminate v, x,, between this relation and (116), getting

o1 (28Y1x1 — Yiz1) + oA o1 QY x—1 — Yuizu—1) =V

Since § is an integer, there exist x|, xj, ..., x,_; such that 26y/;x; — ¥;z; =
l/fjx_’j—i—Vj (I < j < pu—1)and we have a1y x| +a2yx) +. ..+aﬂ_11/fu_1xL_I =
u' + Al logv) + Ajlogv, 4 ... 4+ A/, logv/, of the same form as (116) with one
elliptic integral less. We may iterate until we arrive at a relation with only algebraic
and logarithmic functions.

The general problem (106) has been reduced to the following one: “To satisfy in
the most general manner the equation

Yx = By + Bovaya + ..o+ BaVuyn

4+u+ Ajlogv; + Azlogvy + ...+ Ay logu, (118)
where ¥, Y1, ¥, ... , ¥, designate elliptic integrals of the three kinds, supposing
that yi, y2, ..., y, are rational functions of x and that A;y;, Axys, ..., A,y, are

of the form pAx where p is rational in x and Ax designate the radical which
appears in the function ¥x.” If A,,y,, = pmAx and ¥, x = f % where 6,,x is

: — Om Ym d}’_md_x Omym M : : :
rational, we have v, y,, = o A where o isa rational function of x.

Thus ¥,y = r + Awx + Agwox + A'T1(x,d’) + A"I1(x,a”) + ... where r is an
algebraic and logarithmic expression. Equation (118) finally takes the form
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awx + agwox + a1 I1(x, ay) + axIl(x, a) + ... + o, [1(x, a,)
=u-+ Ajlogv; + Azlogvy + ... (119)

The problem (118) is thus reduced to the three following ones:
A) To find all the possible cases in which

(1 =y =%y = p* (1 — (1 = AP

with y and p rational functions of x (¢, ¢’ are constants).
B) To reduce @w(y, ¢'), wo(y, ¢’) and I1(y, ¢, a), where y and ¢’ are as in A), to
the form

r+ Awx + Apwox + A'TI(x,ad) + A"(x,a") + ...

C) To find the necessary and sufficient conditions for (119) to be satisfied.

The third chapter (p. 557-565) is devoted to the solution of problem C), where
one may suppose that u, vy, vy, ... , v, are of the form p 4+ gAx, p and ¢ rational
in x. Abel takes the problems dealt with in the second chapter of his unpublished
memoir Théorie des transcendantes elliptiques (see our §4) in a more general setting.
Equation (119) is rewritten

1//x=u+ZAlogv,

where ¥x = pox + Bowox + Pillay + follay + ... + B, Tla, and TN, =

i <d+; it is supposed that it is impossible to find any similar relation
lfx—z>Ax

not colﬁtaining all the Ilw, and that all the «,, are different from &1 and
:I:%. Changing the sign of Ax, we obtain —yx = u’ + ) Alogv' and then
2yx = u —u' + ) Alog ;. Changing the sign of x without changing that of
Ax, we obtain —2yx = u” —u” + > Alog 57,,/, and

i

1 VY

1
_ A/ " -
wx_4(u u—u +u )+4E Alog

v :

Ifv=p+gx+ (p'+q'x)Ax where p, q, p’, ¢ are even functions, v’ = (p +gx) —
(P +4'0Ax, v = (p—qx) + (P — ¢'x)Ax and v"" = p — gx—(p' — ¢'x) Ax.

w” _ fxtex-Ax R
Thus 77 = Fr—grdx where fx and ¢x are polynomials, one even and the other one

odd. The algebraic part i(u —u' —u” 4+ u") is of the form rAx where r is an odd
rational function of x and we may rewrite our equation in the form

fx 4+ ex - Ax
=rA Alog —m— 120
yo=r X+Z ngx—(px-Ax (120)

with A in place of %A. We may suppose that there is no linear relation with integer
coefficients between the A,,, otherwise it would be possible to reduce the number v
of the terms in the sum.
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fx+ox-Ax
fx—px-Ax?

udx

Differentiating one term p = log we obtain dp = ~ where

0x = ()2 — (p0)2(Ax)? and vex = 2f x0x — fx0'x,

so that v is an even polynomial. If the roots of Ox are :I:al, :I:az, .. :I:aM, the

decomposition of - in simple elements is of the form k + - + ¢2 +...+
faj _
paj
multiplicity of a; as a root of Ox. Thus the differentiation of (120) gives, after
multiplication by Ax:

/

a,zﬁ > where k is a constant and B = 2m;a; -t —2mjajAaj where m; is the

2 2 2
aiBi a5 B2 a,

B+bBor’+ 5+ 55+t 5
aj — x> a3 —x az—x

d
= L A% — M1 + A)x — 225
dx

2m1a1Aa1 2I712(12Aa2
+A1<k1— > 7 2 > —>
aj —x a; —x
2m'a\ Adl  2mlal,Ad,
Ay | ky — Uit Rt R e S ..
+ 2( 2 a;’2 — x? a2 — x2 +
From this relation, Abel deduces that r = 0 and that only one of the coefficients A,,
may be different from 0. He takes A} = 1, A, = A3 = ... = A, = 0 and finds
B=ki,Bo=0,01 =a, 0 =a, ..., =~— ZmiAal ﬁ = melﬂ ... The

most general relation between elliptic 1ntegrals with the same modulus is thus of the
form

2m Ax 2m, Ax,
Boox — #ﬂal el y 8
o 73
- A
—log LEH XA (121)
fx —px - Ax
where the parameters o, oy, . .. , @, are related by the equation

()= (e0)*(1=x2)(1=c*x?) = (P —ad)" (P —a3)"™ ... (x* —a?)™. (122)
Abel remarks that this implies

miwa| + mrwos + ... + mywa, = C and
m I oy +modloay+ ... +m,Ma, =C — ? 1o Jat¢a-Aa
1 1 2 2t ... n n = 2 Aa gfa—gowAa

if Mo = [ —49%
f (1 ‘z: )Aa
Whenn =1, o; = o and m; = m we have ITa = e — frtox-Ax

2mAa Zont 0g fx—px-Ax

if the parameter « verifies
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(f0)? = (@0* (1 =2 (1 = 2 = (& —a?)". (123)
For m = 2, fx = ax is of degree 1, px = % —1 is constant and (x> — o?)? =
x*— (11’—;2 —az)x2+ % and this givesa = 1 F 1, a = ﬁ.Form =3 and fx

odd, fx = x4 ax, ¢x = b and
@ +ax)? = (1 = x> = 2x?) = (2 = o?)?,

equation which leads to &® = b, &® + aa + bAa = 0, 2a — *b> = —3a?, a*> +
(14 c?)b* = 3a*. This gives a = 3(c*a® — 30%) and o determined by the equation
Aa = %(1 — o).

Generally, as Abel states, o must be a zero or a pole of the function x,, defined
in the first chapter and such that Z"T’r"n = mg—’; (x,, = 0 for x = 0). Indeed we have

P — A (A)? = (3 — )" (37 — )

where «,, is the value of x,, for x = « (chapter I) and, multiplying by (123), we
obtain

(pfx £ qex(Ax)H)? — (ppx £ qf)*(Ax)? = p*(f0)* — ¢ (px)*(Ax)*
— (xz _ a2)277’l(x2 _ am)-

It results that p fx +gex(Ax)? or p fx — qex(Ax)? is divisible by (x> — «?)™ and we
have a relation > — p?(Ax)? = x? — a2, where r, p are polynomials, one even and
the other odd. But this relation implies that p = 0 and that «,, = 0 or %. Conversely,
it is easy to see that such an « satisfies an equation (123). Abel remarks that, in these
cases, the coefficient 8 in (121) is always different from 0, so that there is no elliptic
differential of the third kind integrable by algebraic and logarithmic functions.
When n = 3 and m; = my, = m3 = 1, (121) takes the form
Aa1 Aaz

Aa 1
— oy + — oy = — o + pox — < log
o1 [0%) o 2

fx 4+ @x - Ax
fx —ox - Ax

where fx = x> + ax, ox = b and (x* 4+ ax)?> — V(1 —x>)(1 — %) = (x> — &?)

x (x? — &) (x> — o). This gives & = %, b = aa i,
172
1 Aa o +a
a= —(czocza%a% —a? - Ol% — a%), — = , B= —(,’20{(11062
2 o oo o

(cf. chapter I). In particular, for o, infinite, @ = :I:i and Mo + IT ( ) = ox +

4
ca
l o xAataAx

3 7z log T5ot22. Other relations between two elliptic integrals of the third kind are
obtained by (121) with n = 2.

In the fourth chapter (p. 565-606), Abel solves the problem A) of the second
chapter, that is to satisfy the equation (1 — y2)(1 — ¢’*y?) = r2(1 — x3)(1 — ¢*x?),
y and r being rational functions of x. Since 1 — y> and 1 — c’zy2 have no common




The Work of Niels Henrik Abel 155
factor (¢’ # 1), this equation implies 1 —y? = r?p, 1 —c’>y* = r3p’ where r, r are
rational functions of x, rjr» = r and pp’ = (1 — xz)( 1— czxz). Differentiating, we
obtain —2ydy = ri(ridp+2pdry), —ZC’zydy = ry(rpdp’ +20'dry) which show that

the numerator of Z—)yc is divisible by r| and r;, and so by their product r: % = rv where

v is a rational function without any pole among the zeros of 7. Let y = 5’ irreducible
fraction where p, g are polynomials of respective degrees m, n. One has r = q%

; : — 24y _ gdp—pdq
where 6 is a polynomial and 6v = ¢“ 7~ = =

m > n, the equation

, whence v is a polynomial. If

@ = )@ = pH =021 = D)1 =D

shows that 4m = 2u + 4 where u is the degree of 6. If v is the degree of v, we
thenseethat u +v=m+n—landv=m+n—-1—-v<22m—pu—1=1.
Thus v = 0 and v is constant. In the same way, if n > m, we have 4n = 21 + 4,
v<2n—pu—1=1andv = 0. In the remaining case, in which m = n, it is for
instance possible that ¢ — p = ¢ be of degree m — k < m. Then4dm —k =2u +4
and 1 +v=2m —k— Lforv =22 andy =2m —k— 1 —p =1- Lkis
again 0. In any case v is a constant & and

dy B edx
VA=A =2y JA =)0 -2

The second result announced in the introduction is thus demonstrated.

It remains to determine the rational function y and the transformed modulus ¢’.
Abel begins by considering the case in which y = aofigf‘x and he explains the
6 cases already met in Sur le nombre de transformations différentes ... (our §7).
A0+A1x+A2x2+...+A,Lx“
Bo+Bx+Byx2+...4+ By xt
fraction, one of the coefficients A,,, B, different from 0). The treatment uses only the
addition theorem for elliptic integrals of chapter I and not the elliptic function A and
its double periodicity as in the preceding memoirs; but the lines are similar. If x, x’

are two roots of the equation y = ¥x, one has % =1d _ dv

(124)

He then considers the case in which y = ¢¥x = (irreducible

F Ay = Av and consequently

x' = “;fi;“:ﬁ;‘ = 6x where e is a constant. Thus ¥/(6x) = x and we see that the
equation y = vx has the roots x, 6x, 0%x,...,0"x, ... whereitis easy to see that
oy — xAe, + e, Ax
1 — c?e2x?
de,

e, being the rational function of e defined by L= n% and ¢, = 0 for e = 0 (see
chapter I). Since the equation has only u roots, there exists an n such that 6"x = x

that is ¢, = 0 and Ae,, = 1. These equations are equivalent to 1A:2”e > = 1, which is
- n
2

of degree n~ in e. The number n must be minimal and we must eliminate the roots e
which would lead to e, = 0, Ag,, = 1 for a u < n. If, for instance, n is a prime
number, the root ¢ = 0 is to be eliminated and it remains n% — 1 /solutions e.

Let us suppose that two rational functions ¥z = g, Yz = % where p,q, p', q'
are polynomials of degree p and the two fractions are irreducible. If the equations
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y = ¥(x) and y = ¥'(x) have the same roots x, x’, x”, ... , x*“~1 we have £=2*, =+ q ) =
j:—% where a, b, a’, b’ are the respective coefficients of z* in p, ¢, p’, ¢’ and 7 has
any value. We draw y' = a"fig;‘;; if moreover y and y' correspond to the same
modulus ¢/, we have y = .
L/}
When n = u, the roots of y = ¥x are x, 0x, ... , 6" 1x and
p—qy=(a—by)(z—x)(z—0x) - (z— 0" 'x). (125)

We can draw y from this equation, giving to z a particular value. If n is odd,

_ dtax-0x-62x--6%Hx

noted 2u + 1, putting z = 0, we obtain y = (=== where d, b’ are the

respective constant terms of p, g. Since e,_,, = —e,, and Ae,_,, = Ae,,, we see
2 2
that 0" " x = % and 0"x 0" "x = 1)52722 It results that the value found
m

for y is rational in x. Moreover, it is invariant by the substitution x — Ox because
6%+ +1x = x, and it results that (125) is verified for any value of z. For x = £1 or
+1, Ax =0and §"x = 217" x 50 that

p—qo=(a—ba)(1—2)p* p—qBf=(@—bp(l+2)p?
p—qy =(@—by( —c)p” p—qs=(a—bS(+cz)p"

where «, 8, y,8 are the values of y corresponding to x = 1, —1, 1,, —% and

&
0,0, p", p"" are polynomials of degree u in z. Now we want that

@* = PG =P = (1 =21 - D)
and this implies that {a, B, y, 8} = {1, —1, &, —1}; conversely, this condition will
be sufficient. Letus takea = 1, 8 = —1,y = %, 5= —%. Since y = Ziizg where

x(x? — e?)(x2 —e) - (x2 —e)

—x-0x-0%x..-0%x =
(2% X - 0x X X (1_czezx2)(1_c2e%x2),,.( _CZeix2)

drapl) g dap) arar(z) o a-a(z)
D +be(l)” —bp()> ¥V = vroe(2) 0 vbe(D)
orad FV £+ (@Fbel) =0,dF 7 + (aF2)¢ (L) = 0. These equations
are compatible only if @’ or ' is 0 (¢’ # 1). Let us suppose that ' = 0 =

is an odd function, we have o =

2
by we have ¢ = 2y = Sor = U5 where (1) = J=2 124 . 12%
’ (ﬂ( ) b, o) 1—c2¢2 lfcze% l—Czelzt’
c
2
1\ _ 1 16821022 1fceM_ _ 2utl b
‘/’(E) = @ita T T = Czwl(p(]) Then ¢’ = ¢ (¢(1))”. In order

to determine the multiplicator &, Abel uses the value of d’ = 8— for x = 0, which

1
is :I:ezeg ei L thus ¢ = e % ei ¢ 77 . He has reconstituted the formulae for
the transformations of odd order 2j4 + 1: if e is a root of the equation e, 41 = 0
which does not satisfy any other equation e5,,+; = 0 where 2m + 1 is a divisor of

21+ 1, let us put
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ity x(@ = a2 (3 —x) (& —x?)
Ve (1= c2e2x?) (1 — 2e3x?) -+ (1 — czeixz) ’
e A== =)

N (1= (1 —c23)---(1—c2) |

€= e’es... el (126)

y:

Then we have ———% — 4o d __ Five other systems (y, ¢/, &)
VA=) (1=c2y?) (1=x2)(1-c2x?)

corresponding to the same value of e are obtained by composing with a transforma-
tion of order 1.
For instance, when © = 1, 2u + 1 = 3 is prime and we may take for e any
root different from 0 of the equation e3 = 0, that ;s 0=3—4(1 + e + 6¢%¢* —
48 of degree 4 in ¢® and the ¢ = 3 (11_;;) , 6 = c\/7 ,y = i}{c f(ec;ei%
Eliminating e, we obtain the modular equation in the form

(c — ) =4aved (1 — Ved)?.

. s 2 2 2
The roots of the equation 0 = TZ(Z —e)z—e) - (z—e) + y(1

2e*A)(1 — 2 212) (1 — czezzz) are x,0x,...,0%x, thus x + 6x + ... +
(=D)AL e202..02 . .
Oy = — T 9y Since 0"x 4 Oy = 244 thig gives y =
u+§c—7 1—c?epx

2Ae-x 2Aep-x 2Ae;-x Je o (=Dktl
(x + 2252 + 2 + ...+ =222 | P A,

. Acyte, A Acy—e, A o

If  is even, noted 24, we have 6%x = = 6“02:2’:2)( =5 e“cze?‘xzx, which imposes
e, = 0 or 5. In the last case, 0/'x = £_- 1 and 9“+’”x ==+ emx Thus the roots of
y = yYx arex, :I:CX,Qx, Ok 9““ X, ..., 0% 1x and we have

1
p—qy=(a—by(z—x) (z F ;) (z—6x)(z— 0" 'x)..

x(z — 0" 'x)(z — 6" x). (127)
We deduce from this equation that
1 2Ae - x 2Aer - x 24e,_1-x
- = (by — + — it ——
@ —by=@by-a (x * 1—c2e?x? 1 —c2esx? 1— czeil)ﬂ)

where a’ and b’ are the coefficients of z2*~! in p and q. It results for y a rational

expression in x, invariant by x > 6x. Choosing a = b’ = 0, we obtain
1

a
" 24e,,_1x
b )C:i: % + 2Aex + + /4 1

2,242 2
1—ce“x 1ceulx

y:

_ Ax(l c2e*x®) (1 — 2 ezx )il —c ei71x2) — A
L+ ax® +ax? + ...+ a,x ’
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If, for instance, y = 1 when x = 1, we have A = ﬁ and, from (125), g —
p = (1 — 2)(1 F cz)p* where p is a polynomial in z. Since ¢ is even and p odd,

g+ p=(1+2)(1+cz)p?and
q2 _ p2 — (1 _ 22)(1 _ CZZZ)(,O,O/)Z-

It results that ¢> — ¢’>p? must be a square and ¢’ = L, where « is the value of y

corresponding to x = ic, satisfies to this condition. Indeed 6#"x = 6 (:&:é) =

0 (ﬁ) =0Ox forx = ﬁ’ so that p — g is a square and the same may be said of
p+aq. Thus p?> —a’q* = t*> where t is a polynomial in z and (g2 — p?)(¢? —c/2p2) =
(1 = 22)(1 = *2%)r? for ¢ = 1. Sylow observes that « is never 0 nor oo, but it is
equal to 1 when p is even and this value does not work for ¢’. He explains how to
find a correct value in this case ((Euvres, t. II, p. 520-521). Then Z,yy = 5% where
ﬁ. Abel gives an expression of the

denominator ¢ of ¢x as a product b(z — 8)(z — 68) - - - (z — H**~18) where § is a pole
of y. It is easy to see that § = ﬁ is such a pole. Thus, if e is a pole of ¢, such

the equations ¢,, = 0 and Ae,, = 1 cannot be satisfied for any divisor m of 2u, the
formulae

¢ is the value of % forx =0, thatise = A =

:I:E 1 " 1 n 2Aex 2Aerx 20e,_1x
-—— =X —_— . I
cy ex 1 —c2x? 1 —c2e3x? 1 - czei_lx2
1 2Ae 2Aey 2Ae,_1
+e = 14— e+ —
c( c+l—czez+l—c2eg+ +1—czefh1

dy — edx
JA=A-¢2y?)  J1=aD)(1-c2)
y=(1+c)—*; and ¢ = 22

lead to

. For instance, when u = 1, ¢ = 1 £ ¢,

1+cx? 1+c
Another possible value for e is a root of ¢, = 0 such that Ae, = —1 (for
Ae, = 1 would lead to 0#x = x). Here 0#x = —x, PHtMmy = —0™x and equation
(127) is replaced by

p—qy=(a—by) (> —xHE*— @)D (P — 0" 'x)?)

which gives @’ — b'y = +(a — by)(xfx ---0*7'x)? for z = 0, @’ and b’ denoting
the constant terms of p and g. Thus y is a rational function of degree 2;4 of x and

it remains to determine a, b, ', b’ and ¢/, ¢. For instance, when u = 1, Abel finds
y= if—gi, ¢ = }—;i, e=(1+ c)\/—_l and he also gives the 5 other possible values
for ¢’.

When the equation y = yx has other roots than x, 0x, ... , 0" x, Abel shows
that the degree p of this equation is a multiple mn of n and that its roots may be
distributed in m cycles x?, 9xP, ..., 9"~ 1x? 0 < j < m—1.The proofisidentical
with that used for the second theorem of the Mémoire sur une classe particuliere
d’éqations ... published in the same volume of Crelle’s Journal. According to the
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precedind results, there exists a rational function y; = ¥;x such that the roots of the
equation y; = Y x are x, 0x, ... , 0"~ !x and that, for convenient ¢y, &

dy; . dx
= 1 .
Ja—ha-cy V- =)

(128)

Let Yz = Z—:, sothat p' —¢q'y = (d —by)(z —x)(z —6x)---(z — 0" x). If

= DO < i<m— p=qy _ P =gy p'=d'va . pP=d'ym
Vi1 = ¥1xV (0 < j <m—1), we see that a—by = a=by d—by, T Now

let « be a zero and S a pole of ¢z and let «y, s, ... , &y, B1, B2, - - , B be the
corresponding values of yj, ya, ... , ¥,; from the preceding relation we deduce that

p=Ap —a1g)(p —arg)--- (p) —ang) and
q=A"(p'=Bgd) P — Bg) - (P — Bnd)

A —apD(1—e)(y1—om)
) O1=BDOG1=B2)(y1—Bm)’
function of degree m of y; where A = %. The combination of (124) and (128) gives
the equation

where A" and A” are constants, and this gives y = rational

dy _ & dy,
VA=A =en?) e fa—yha -y

and we see that the transformation of order u = mn is obtained by composing
a transformation | of degree n and a transformation of order m. This result permits
to reduce the theory of transformations to the case in which the order is a prime
number.

. ) () (D)
In the general case, by the above reasoning y = A @=0t—a)--(—a?” )

=B x—p)(x—pH=D)
a, o, ... ,aVarethezerosand B, B/, ... , B~V the poles of yx. Abel considers
in particular the cases in which b or a is 0. When b = 0, the equation

where

p—qy=az—x)@—x)(—x"") (129)
implies thata’ — b'y = —a(x +x' + ...+ x*~D) where a’ and b’ are the respective
coefficients of z*~!in p and ¢. If % £ % forallm, u =2n+ 1is
odd, ¢’ = 0 and

ax (14 2Ae 2Ae,
= Ax — ..+ ————.
Y 1 — c2eix? 1 —c?e2x?

Therefore ¢ = (1 — cze%xz) (1= cze%xz) and p is obtained by making x = 0 in
(129):

p =az(z* — ef) c (2 — eﬁ) and
x(e% — xz)(e% — xz) S (6,21 — xz)

(1 —c2e3x) (1 — 2e3x?) - (1 — 2e2x?)

y:
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On the contrary, if X8¢Ax — xde_edx ', — () or l. Whene = L, v/ = +1
1—c2e2x2 - 0

uw =2niseven,d = 0and y = A<x:t$+12if:212+ +%)=
a(1-63x2)(1-63x2)--(1-82x 2)

x(l—c elxz)(l c2e2x2) -(I—c en 1x

have the same degree contrary to the hypothesis.

Whena =0, p — gy = by(z — x)(z — x) - - - (z — x*~D) and it results that

. When ¢ = 0, x’ = —x and one finds that p and ¢

(1— cze%xz)(l — cze%xz) (1= czeix2)
x(e? —x2)(e3 — x2) -+ (€2 — x?)
x(1—c ezxz)(l c? e x2) (1= ¢? en 1)cz)

(1 — 82x2)(1 — 82x2) -+ (1 — 82x2)

according to the parity of x.
In particular

x(e% — xz)(e% —x%). . (eﬁ —x%)

-x2p.+1 = 2 2
(1 = 2efx?)(1 — c2e5x?) - -+ (1 — c2e2x?)
A 2Ae;x 2Aepx n 2Ae,x
= X - — 5
1—c2e3x? 1 —clesx? 1 — c2e2x?
_ 2 : _ 1 2,22 2 _
where 2n = (2u + 1)” — 1. Doing x = § and 0, one finds Ac™eje; - e, = a,
2
A= andaeles €2 =2u+1.Thuselel - €2 = 2"“ anda = ¢ = 2+,
2u+1 +1 276 M 12 n

_ xAejte; Ax erz:I:egAx xAeyte, Ax
The roots of the equation x;,41 = y are x, —2d 0 1-ada T

Let Ox = ;‘f‘;gﬁ;‘ and O;x = % be two of these roots such that neither e
nor €' is a root of xp,1; = 0 for a divisor 2m + 1 of 2u + 1 and such that 6;x
is different from x, Ox, ..., 6*x. Then x, 6x, ... ,0%x, 6x, ... , Gf“x are 40 + 1
distinct roots of x5,41 = ¥x = y. Thus, for any m and k, (0"x) = w(O{‘x) and
it results that W(O{(G"’x) = Y(0*"x) = X241, S0 that 0{‘9’"x is also a root. Now it
is easy to prove that, for 0 < m, k < 2u, all these roots are different when 2 + 1
is a prime number. We have thus written the (2u + 1)? roots of our equation. Their

expression is

/ /
kom . xAey k + ey Ax _ enAe) + e, Aey,
919 X = T where Cmk = W
1 —c?e, e 1 — c?e; e

The roots of the equation x;,,+1 = 0 are the e,, , where ¢ o = 0. The non-zero roots
are given by an equation of degree 41> 4+ 4,4 which may be decomposed in 24 + 2
equations of degree 2u with the help equations of degree 24 + 2. It is the result of
the Recherches of 1827 (see our §3), demonstrated here by a purely algebraic way.

Indeed, if p is a rational symmetric function of ey, e, ... , e, it may be expressed
as a rational function @e; of e; such that ge; = @e; = ... = @e,,. Replacing
e1 by e, 1, we see that ge, | = pe,» = ... = @eym 2. It results that the sums

v = (pe)k + (peo. )k + ... + (goezw)k are rational symmetric in the 4> + 4.
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quantities e,  different from O and so rational functions of c. Thus p is the root
of an algebraic equation of degree 2. + 2 with coefficients rational in c. We may
apply this result to the coefficients of the algebraic equation of which the roots are

€1,€2,...,€,.
According to the formula (126), the modulus ¢’ obtained from ¢ by a transfor-
mation of order 2i¢ 4 1 is a rational symmetric function of ey, ey, ... , ey, Itis thus

a root of an equation of degree 2u + 2 (the modular equation). Abel once more
says that this equation seems not to be solvable by radicals. He adds that, since
f‘;z—ﬁ = = j—,"y, the multiplication by 2 + 1 (which is of degree (2u + 1)?)
may be decomposed in the transformation of order 2 + 1 from x to y and another
transformation of the same order from y to x,1. Jacobi also used such a decom-
position. The expressions of x,,,4+; and ¢ in y and ¢’ are given by (126) with a root ¢’
determined from ¢’ as e was from c. Thus the modular equation is symmetric in
(c, ).

Abel recalls the total number of transformed moduli for a given order p: 6
for w = 1, 18 for u = 2 and 6(n + 1) for © an odd prime number. Then he
explains the algebraic solution of the equation y = x where {¥x is a rational
function defining a transformation. It is sufficient to consider the case in which the
order is an odd prime number 2i« 4+ 1 and we know that, in this case, the roots are

x,0x,...,0%x where 0"x = % and 6**1x = x. Let § be a root of 1 and
—cremx

V= x+80x +820%x +. . . +8H0%x, v = x+80% x+ 8021 x +. . .+ 8%0x. They
are of the form v = p+ gAx, v = p — gAx where p and ¢ are rational functions of
xand v’ = s, V¥ 4?1 = ¢ are rational functions of x. Since they are invariant

. . 4
by x — 6x, they are rational functions of y and we have v = /L 4 /10 — s2u+1,

If vy, v1, ... , vy, are the values of v corresponding to the 2i4 + 1 roots of 1, we
obtain x = ﬁ(vo +ui+.. Fvy), 0Mx = 2Mﬁ(vo +6 " +...+ 8‘1”’“1)2”).

The last chapter of this first part deals with the following problem: “Given an
elliptic integral of arbitrary modulus, to express this function by means of other
elliptic integrals in the most general way.” According to the results of the second
chapter, this problem is expressed by the equation f M — fr oy +kovoys +. .+

Ax
ki Wmym + V where px = f “y 1s the given integral, V1, ¥, ... , ¥, are elliptic
i - ; Ayt Aoy Amy
integrals of respective modulicy, ¢z, ... , Cimy Y1, Y25 -+« s Yo A'x S PR ey v

are rational functions of x and V is an algebraic and logarithmic function. One
may suppose that the number m is minimal and, according to a theorem of the

dy; dx  dyy dx dym dx
fourth chapter, one has Tor = €l A0y = E250s o s Dpom = Em 5y Wh.ere
&1, &2, ..., &y are constant. Now, for 1 < j < m, there exists a rational function

x;j of x such that w(x;, ¢) = eV w(x, c;) and it results that there exits a rational
function y of x such that ¢y be expressed as an elliptic integral of modulus c¢; where
x is the variable.

The part of the memoir published in Crelle’s Journal stops here and Sylow
completed it with a manuscript written by Abel and discovered in 1874. Here the
transformation of elliptic integrals of the second and third kinds is explained. For the
second kind, Abel proposes two methods. The first one is based on the differentiation
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with respect to the modulus ¢ of the equation @w(y, ¢’) = ew(x, ¢), which gives

/ n dy 1
(1 c’2y2)A(y, ) dc Ay, c)
2
de 8/ x=dx ‘ (130)
A(x c) (1 = c2x2)A(x, ¢)
. x2dx 1 1—x%)d
Now one can verify that [ m = 621 1X2(XXC) + 5 2 ﬁ and there
2
is a similar identity for f W% Thus (130) is rewritten
¢ dd / oyd =y dy 1
1—c?dc <w(y, ) =@y, ¢) Ay, ) + dc A(y, )
(. 0) — (e, ) — *L=F)
= w(x, ¢) — wolx, ¢) — ————=
2 0 A(x, )

or wy(y, ') = Aw(x, ¢) + Bwy(x, ¢) + p where A = ¢ (1 _ cde(l=c?) ) _ dell—c?)

c/de’ (1—c2) dde’
_ ec(1=c?)de _ (=cPydedy 1 x(1=x?) _ ya—yH
= vi—dae WP =T G ane T B ace T A0

The second method is based on the decomposition of y? in partial fractions:

oA B s
= x—a)? x—a
where a is a pole of y and A, B are constant. If y = é, A= = a)z and B = ((‘Z/;“)3
and we have
(1 =21 =) (@0 = & ((g0° — 1) ((p0)* = ¢?). (131)

For x = a, this gives (1 —a?)(1 — c?a®)(¢'a)*> = &°c. Let us differentiate (131) and
make x = a; we obtain 2(1—a?)(1—c*a*)¢'ag"a—(2(1 + H)a — 4c*a’) (¢'a)* = 0
and we conclude that

- a®)(1 — *d®) B 'a -1+ cAa +2c%a’
T (@a)? 202 ’ T (¢a) 20
Thus
/ yidy 1 / (1 —a®) (1 = c2a?) N 2%a® — (1 +c*a\  dx
Ay, ¢ ec? (x —a)? xX—a A(x, c)
Sdx
3 . 132
* f A(x, ) (132)
Now d% = — <(1_“(2;(_]a;§2“2) + 202“3;(]&”2)“ +c?a szz) Aé’fc) and (132)

takes the form:
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2
yidy 1 (Alx,e) 5, 5 f Sdx
f A0 e? < R caw(x,c) + c“wo(x,c) | + ¢ Ao

If the poles of y are ay, as, ... , a,, we finally obtain

ec?wo(y, ) = pwo(x, c) — (c*(a? + a3 +... + ai) — 2 w(x, ¢)

+...+
a—x ap—x a, —x

+A(x, ¢) <

where k is the value of y for x infinite. Abel separately considers the cases in which
k=0ork = é. This last case is reduced to the first one by putting x = é For
example, when

2
¢'= 1_{0 y_(1+C) 2ande=1+c,
@o(y, ) = L9am(x, o) + Haw(x, c) — L= xA(x,?_

2 14ex

For the mtegral of the third klnd, Abel uses the equation

y _ 1 o ydy
f (@ —x)A(y,c)  a . c.ay+ / (@? —y) Ay, )

and the decomposition in partial fractions

1 1 Alay, ¢ Alas, ¢ Ala,, c
a’—yZ/ 8A(a’d)< - )+ = )+ +M>

ay —x a—-x  a,—x
which lead to

. d
Mn(y,c )+ A, ) (a’z—;Z)yA(y )

where k| is a constant and v is an algebraic and logarithmic function. Now the sum
of u integrals in the right hand side may be reduced to a single integral with the help
of the result of the third chapter: if « is determined by

(f0)? = (@0 (A(x, 0)* = (& —a) (¥ —a3) - - (¥ — @) (x* — &)

where fx and ¢x are polynomials, one even and the other odd, according to (121)
we have > @H(x, c,a) = ko(x, c)+ #H(x, c, o) — % log % The
coefficients of fx and gx are determined by the equations fa,, + ¢a,, - A(ay,, c) =
0(1 < m < p) and the sign of A(w, ¢) by fa 4+ paA(a, c) = 0. Another way to
do this reduction consists in observing that if @ is any one of ay, aa, ... , a,, that is

aroot of @’ = Y/(x), any other has the form a,, = W where e,, does
— m

not depend of a. The same formula (121) withn = 3 and m; = m, = m3 = 1 gives



164 C. Houzel

A 9 A 9
M17()6, C,ay) = (@ c) M(x, c,a) + Buw(x, c)
an a
Aey, ©)
+———I(x, c, ep) + log Sy,
€m

and Abel shows that Y~ 2“9 [7(x, ¢, e) = 0.

A posthumous paper, Mémoire sur les fonctions transcendantes de la forme
J ydx, ou 'y est une fonctions algébrique de x ((Euvres, t. 11, p. 206—216) contains
extensions of the preceding results to more general Abelian integrals. Abel first con-
siders w integrals r; = [ y;dx(1 < j < p) where y; is an algebraic function of x and
he supposes that they are related by an algebraic relation R = ¢(r1, 2, ... ,r,) =0
where ¢ is a polynomial with coefficients algebraic with respect to x and p is
minimal. He proves that in that case there is a linear relation

cri+or+...+cury =P (133)
where ¢y, ¢3, ... , ¢, are constant and P is a rational function of x, yi, y2, ..., Y.
Indeed, one may suppose that R = rl’j + Prlkf1 + P rlkfz + ... isirreducible with re-
specttor,, (the coefficients P, Py, ... beingrational withrespecttory, ra, ... , ry—1).

By differentiation, one obtains
i ky + P+ (k= D Py, + P)ri > +...=0,

hence ky,, + P’ = 0 and kr,, + P = constant. This givesk = land R=r,+ P = 0.
Now the decomposition of P in partial fractions with respect to r,,_; has the form

Sk k
P = P E— Ukl 1s
Z (ru,fl +tk)k Z k pn—l1

where 7, and vy are rational with respect to r1, 72, ... , r,—2; by differentiation,

Z (_ kSk(y/L—l + t//{) + S/Q )
(ru—l + tk)k+1 (rp_—l + tk)k

+ >k kot ) = =y

and this relation implies that S = 0 and vj, = 0. Moreover, if & is not equal to 1, we
must have kvyy,—1 + v_, = 0, but this would imply kvgr,—1 + vi—1 = constant,
which is impossible. So k = 1 and P = vyr,—1 + P; where v; is a constant and

Py is rational with respect to ry, 72, ... ,7r,-. In the same way, we obtain, with
a slight change of notation, P; = v,_j_jr,—1—; + Pj41(0 < j < u — 2) where
Vi, V2, ..., v, are constant and P; is rational with respect to 1,72, ... , 1 —1_j.

Finally, we have r, 4+ v, 17, —1 + vy—or,—2 + ... + viry + vo = 0 where vy is
an algebraic function of x and this gives a relation of the form (133) where P is
algebraic in x. Let P* + R; P*~! 4+ ... = 0 be the minimal equation of P with coef-
ficients rational in x, y1, ya, ... , y,. Differentiating, we get (kdP + dR;) P*~! +
(k—DRidP+dRy) P2 + ... = 0 with ££ = ¢;y; + ¢y, + ..., so that
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kdP + dR; = 0Oand P = —%+ constant. This gives k = 1 and P = —R;, ra-
tional with respect to x, y1, y2, ..., Yu-
In his next theorem, Abel considers a relation

ciry+cer+...+cury =P H4arloguy +azloguy + ... 4 ay,logu,  (134)

where vy, va, ... , v, are algebraic functions of x and P is a rational function of
Xy V1 Y2 oo s Yus U1, V2, ..., Up. If vy, is Toot of an equation of degree n with
coefficients rational in x, Y1, Y2, .-+ , Yu, V1, U2y <« , U, let v, v, ., 0™ be
its n values. One has

1 / " (n)
clrl—i-czrz—l—...—i—cur,L:;(P +P'+...+P")
+a;logv; +axlogvy + ...+ ay—11og v,

1
+—ay, log(v, v, - vi™)
n

where P/ + P” + ... + P™ and v, o v,(,f) are rational in x, yi, ¥2, ..., Yu,
V1, V2, ..., Uy—1. Iterating we finally obtain ¢iry + cprp + ... + ¢ty = P +
aylogty +aplogty + ... + «y logt, where P, ty, ... ,t, are rational functions of

Xy V15 Y25 o0 5 Yue

In particular, if y is an algebraic function of x and v¥/(x, y) a rational func-
tion such that the integral [ (x, y)dx is algebraic in x,y,logvy,loguv,, ...,
log v,,, then this integral may be expressed in the form P + «; logt; + ay logt, +
...+ oy logt, where P, ti, ... ,t, are as above. If there is a relation f/ ¥ (x, y)dx +
S ¥1(x, y1)dx = R where R is of the form of the right hand side of (134), and if
the minimal equation for y; remains irreducible after adjunction of y, then one has
separately [ ¥(x, y)dx = Ry and [ ¥, (x, y1)dx = Ry. Forif y, y/, ..., y\" are the
values of the algebraic function x,

ny(x, y)dx 4+ W1 (x, ¥;) + 91, ¥ + -+ g (x, y7))dx
=d(R +R' +...+R"™),

hence a relation [ ¥(x, y)dx = %(R’ +R' + ...+ R"™) — [ f(x)dx = R, and
then [ Y (x, y1)dx = R — Ry = R,. If there is a relation /' ydx = R where y =

1 2 n—1 . .
Po+piS n+pas i+, 4+ pa_1S” 7 ,Ppo, P, .., Pu—1, s algebraic functions such
1, . .
that s7 is not rational in pg, pi,... , pn—1, S, then one has separately f ”jf”—%dx =R;

O<m<n-—1).IndeeddR =df (s%> =Y (s%) dx and the same relation is true

1 1 o els :
for any value o*s# of s7 (o primitive n-th root of 1). It is easy to deduce that

/ pmmdx = %(f(\’l/g) + C(mf(d%) + ...+ a(”*l)mf(anfl«n/g)) -

Sn

The rest of the paper is not finished. Abel studies the cases in which an integral

y=ff<x, (x—a)™ L (X — a7, ..., (x — a)m )dx
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(f is rational) is an algebraic function, and the corresponding reductions of Abelian
integrals. According to the preceding results, he is reduced to

_k K _ka
/dwp'(x—al) "(x —ay) "™ - (x —a,) ™

kq

1— -2 1— kn
:PZU(X—al) mj (x—az) mp ...(x_an) mp

b kb

where p and v are rational and -1, =% ..
my’ my

., ,’;—’; are between 0 and 1. This gives
p=v(Ag+Ax+...+A,_1x"

dv dv
+—Gx—a)x—a) - (x —a,) =vex + — fx
dx dx

where

Ag+ Aix+...+ An,lx”_l
k
= (1 - —‘) (x—a)(x —az) -+ (x — ay)
m

1
ka

+<1——)(x—al)(x—as)--~(x—an)+.-.
my

kﬂ
+(1——) x—apx—a)---(x—ay-1) .
m

n

Abel explains the cases in which v = x™ or m In the first case

p=x"(Ag+Aix+ ...+ A,_1x"H
+ mx" "By + Bix+ ...+ B, x4 x")
=mBox""' + (Ag + mB)X" + (A; + mBy)x" ' + ...
+ (Ao +m)x

_k _k _kn
Putting [ x“dx(x —a;) "1 (x —az) ™ -+ (x —a,) ™ = Ry, he gets

R 1 WI( )1_k71( )I_Q ( )17&1
g =—Xx (x—a m(x —a m ... (x —a iy
m+n—1 m+ Anfl 1 2 n
mB A, mB,_
TP Rmfl—...—inz—i_ anm+n72
m+ Ay m-+ A,
a recursion formula which permits to express Ry, 1,1 by Ro, Ry, ..., R,—».
In the second case
. (24 m fx
P= (x —a)m (x — Ol)erl
B m fo oo —mf'a (p/a_mfz”a
T (x — )t (x —a)m (x — a)m—1

(n—1) (n)
" e [
2-—n M2

(.X _ a)m—n-H
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_k _k _ k.
Puttingf (xf—j;)u(x—al) m(x—ay) ™ --- (x —a,) ™ =S§,,he gets

-k 1-f 1-fn
(—ay)) "Ml (x—ap) "2 --(x—ay) ™
(xia)lﬂ

n—la ” (n)
= _mfaSerl + (900[ - mf/a)Sm +.oo+ (1.;..(,,_1) - ]1];:) Sm7n+l'

If fa # 0, this permits to express S, in Si, Ro, Ry, ..., Ry—». If foo = 0 but
pa —mf'a #0, S, is a linear combination of Ry, Ry, ..., R,_>. Now

k1
pay —mf'ay = (1 o —m> (a1 —az) -+ (a1 —ay) #0,
1
so that the §,, with ‘parameter’ a; are linear combinations of Ry, Ry, ..., R,_».
By the same method, Abel proves that a linear relation

coRo+ciRi+ ...+ cpoR 0 +eiti +atr + ...+ euly
LN k2 k.
=vx—ap) M (x—a) T (=) T
L Kk _k L .
where #;, = f m(x —ay)) ™ (x—a) ™ ---(x —a,) ™, is not possible. He
finally proves that, in a relation coRy + c| Ry + ... + ch—2R,—2 + €11] + 262 +
Aeuty = P+ajlogv; +azlogvy +. .. 4oy, log vy, the right hand side may be
reduced to the form vr,_1A,_1+> a Y a)" log(Z(skkkwk k) where visthe g.c.d. of

my,my,...,my,foreachk € [0,v—1], 1y = (x — al)'"l (x— az)"'z e (x—a )mn,
A being the remainder of the division of kk; by m, w is a primitive v-th root of 1
and r,_1, S0, 1, ... , Sy—1 are polynomials. First of all, the right hand side has the
form

ro+riA+...+r_1Av_1 + Zalog(so +SsiAF . FSui A1)

and when A, is replaced by another value o* A1, Ax becomes w**1;. We thus get
v expressions for the considered integral [ £ f\'dx and the terms riA; withk < v — 1
disappear from the sum of these expressions. It is then possible to prove thatr,_; = 0
and that the relations of the considered type are combinations of those in which only
one « is different from 0. In this case | ff\'ldx =0(x, A1) = logO(L1) +wlog O(wh)+
w?log B’ A1) +. ..+ ' log B(w " 'A;) where O(L|) = sog+S1A1+...4+Sp_1hv_i
and Abel attacks the determination of the possible forms for fx, but the paper is left
incomplete (see Sylow’s note, Euvres, t. 11, p. 327—329).

9 Series

We saw above (§3) that in his first papers, Abel did not hesitate to use infinite series
in the 18th century manner, that is without any regard to questions of convergence.
On the contrary, when dealing with expansions of elliptic functions (§6), he tried to
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treat the problem much more rigourously. In the meantime, he had read Cauchy’s
lectures at the Ecole Polytechnique and he was impressed by this work. In a letter to
Holmboe (16 January 1826), he writes “On the whole, divergent series are the work
of the Devil and it is a shame that one dares base any demonstration on them. You
can get whatever result you want when you use them, and they have given rise to so
many disasters and so many paradoxes.” Abel then explains that even the binomial
formula and Taylor theorem are not well based, but that he has found a proof for the
binomial formula and Cauchy’s lectures contain a proof for Taylor theorem.

The memoir Recherches sur la série 1 4§ x + m('l"z D2 4 mm 11) m=2x3 4.
published in the first volume of Crelle’s Journal (1826; CEuvres, t. 1, p. 219— 250) is
devoted to a rigourous and general proof of the binomial formula. We have already
explained the formal part of this memoir (§1) and we shall now analyse the part
where Abel studies questions of convergence. Abel defines a convergent series as
a series vg + vy + v2 + ...+ v, + ... such that the partial sum vy + vy + v +

. + vy, gets indefinitely nearer to a certain limit, which is called the sum of the
series, for increasing m, and he states Cauchy’s criterium for convergence. The first
theorem says that a series €opg + €101 + €202 + ... + €npm + ... is divergent
when py, p1, p2, ... are positive numbers such that 0 fg“ has a limit « > 1 and
the ¢, do not tend towards 0. On the contrary (theorem II), if the limit o is < 1
and the ¢, remain < 1, the series is convergent. The proof uses the comparison of
po+p1+. ..+ pm+... with aconvergent geometric series and Cauchy’s criterium.
In the third theorem, Abel considers a series

o+t +...+6,+ ...

of which the partial sums p, = t + #; + ... + f,, remain bounded by some
quantity 6 and a decreasing sequence of positive numbers &g, €1, ... , &y, ... The
theorem states that

r=¢golty + &1ty + &b+ ...+ Epity

remains bounded by 8¢¢. Abel uses what is now called ‘Abel transformation’, putting
fo = po, 1 = p1 — po, 2 = p2 — p1, ... sothatr = po(eg — &1) + p1(e1 — &) +
St Pm—1 (Sm—l - Sm) + PmEm = 850-

Theorem IV concerns a power series fo = vg+ v + a2+ .. v+
and it says that if the series is convergent for a (positive) value § of «, it remains
convergent for the (positive) values o < é and, for such an «, the limit of f(o — )
for B — 0is fo. Abel puts o = vg + v + v + ...+ Uy ! and Yo =
Un@" + V1o = (4)" 0,87 + (%)mH V18" 4 < (9)" p where
P = 08", 08" 4 Uy 18 YAt U8 4 V18" 4 0,408M T2, .. (theorem III),
and this bound is arbitrarily small for m sufficiently large. Now fo — f(a — B) =
oo — (o — B) + Ya — Y(a — B) and, since g is a polynomial, it is sufficient to

m
bound Yo — Y¥(a — B) by ((%)m + (#) ) p, which is easy to do.
In the following theorem, the coefficients vy, vy, ... are continuous functions of
x in an interval [a, b] and Abel says that if the series is convergent for a value  of «,
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its sum fx for & < 4 is a continuous function in [a, b]. Unfortunately, this theorem is
not quite correct. Abel’s proof consists in writing fx = ¢x + ¥x where ¢x is the sum
of the terms up to m—1 and x is the corresponding remainder, which is bounded by
(%)m Ox where 6x > v,8", V8" + Vi1 8" L, 08" + V18" 4 v 028", L
(theorem IIT). For each x, this bound tends towards 0 as m — oo but the convergence
is not necessarily uniform in x and Abel’s reasoning implicitly uses this uniformity.
Recall that Cauchy stated more generally that the sum of a convergent series of
continuous functions is continuous. In a footnote, Abel criticises this statement,
giving the series sinx — % sin 2x + % sin3x — ... as a counterexample: the series is
everywhere convergent but its sum is discontinuous for x = (2m+1)m (where it is 0).

Theorem VI correctly states the formula for the product of two absolutely con-
vergent series vo + v + v, + ... = pand vy + v} +v5 +... = p'. Let p (resp. p;,)
be the absolute value of v, (resp. v],). The hypothesis is that po + o1 +p2+... = u
and py + p} + p5 + ... = u’ are convergent and the conclusion that the series of
general term r,,, = vVov,, + V1V,,_| 4+ V2v,,_, + ...+ v,V is convergent and that its
sum is equal to pp’. Indeed ro +ri +r2 + ... + rom = pup,, +1+1 where

Pn=vVo+vi+...+Vu p,=vo+Vi+...+0V,,
/ / /
= Povyy, +p1v2m—l +... +pm—|vm+1 ’
t/ = p6U2m + p/1U2m—l +...+ p;n—lvm-f-l .

Now |t| < u(p5,, + P51+ 05 ) 1] < U (2 + P2m—1+. ..+ pmy1) so that
t and ¢’ tend towards 0. This result had been given by Cauchy in the sixth chapter of
his Analyse algébrique (1821).

As an application, Abel considers two convergent series fo + 1t + 1t + ... , t) +
t; + t5 + ... with real terms and such that the series ot 4 (t1#, + tot}) + (t2t) +
ity + toty) + ... is also convergent. Then the sum of this last series is equal to the
product of the sums of the two given series. Indeed, by theorem 1V, it is the limit of
toty + (it + tota + (bt + ti1] + toté)ozz + ... fora — 1 (o < 1). Since both
series o + i + ha® + ... and 1) + tja + tha® + . .. are absolutely convergent for
a < 1 according to theorem II, the product of their sums is equal to

toth + (111 + tot))a 4 (taty + t11] + tot))o® + ...

and the conclusion is clear.

In the third volume of Crelle’s Journal, Abel published a Note sur un mémmoire
de M.L. Olivier, ayant pour titre “Remarques sur les séries infinies et leur
convergence” (1828; (Euvres, t. 1, p. 399—402). In his memoir, Olivier stated
a wrong criterium for the convergence of a series Y  a,: that na, must tend to-
wards 0. As a counterexample, Abel gives the divergent series of general term

1 1

a, = —— for which na, = —— tends towards 0. He proves the diver-
nlogn logn
1

gence using the inequality log(1 + x) < x, which gives log(1+1) < 1 or
loglog(l + n) < loglogn + log (1 + %> < loglogn + —1— It results that

nlogn nlogn*
1

nlogn

loglog(1 +n) < loglog?2 + ngz + @ +...+ and the divergence follows

from lim (loglog(1 + n)) = oo.
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More generally, Abel proves that there is no function gn such that lim(gn-a,) = 0
be a criterium for the convergence of »_ a,. Indeed, when Y_ a, is divergent, the

: : ay a as an
same is true for the series @ + e + v +...+ g p—— + ... for

log(ap +a, + ...+ a,) —log(ap +a; + ... +a,—1)

a, Ay
=log<1+ ><
ay+ay+...+a,— ag+ay+...+a,—

aj ap
andlog(a0+a1 +.. .+(1n) —lOg(l() < w0 + dotar + a0+u1+a2 +...+ m
Now if ¢n is a function such that ¢n - a, — 0 is a criterium of convergence, the

series

1 1 1 1 1
+ + + +.4+—+
p() 92 @3)  @4) pn
is divergent but
1 1 1
5 + . . . + ..
@5 e®) ((p(l) (p(2)> o4 (_> o T W)
1
+ +..

is convergent, which is contradictory.

Abel left unpublished a memoir Sur les séries (Euvres, t. 11, p. 197—-205),
probably written at the end of 1827. He begins by giving the definition of convergence
and recalling Cauchy’s criterium. Then the first part deals with series of positive
terms and the second part with series of functions. The first theorem states that if
a series ug + u; + up + ...+ u, + ... with u, > 0 is divergent, then the same
1strueof”'+”2+”3+ ;‘"1+ ,where s, = ug +u; +ur + ... +u,

S
and o < 1 It i 1s an 1mmed1ate extension of the preceding lemma, where o was
taken equal to 1. The following theorem says that, under the same hypotheses,
> % is convergent when o > 0. Indeed s5,% —5,% = (s, — up) ® —5,% >

un

o For example, if u, = 1, the first theorem gives the divergence of the series

1 + 5+ % + }l +...+ % + ... and the second theorem gives the convergence of the

seriesl+#+#+ﬁ+...+#+... for @ > 0. When a series Y _ ¢n is
divergent, a necessary condition for the convergence of ) _ u,, is that

liminf % = 0.
on
Indeed, if it is not the case, there exists @ > 0 such that p, = % > « for n
large enough and > u, > Y « - ¢n is divergent. Thus Y u, is convergent only if
liminf nu, = 0 but this condition is not sufficient and Abel recalls the final result of
the preceding memoir. Abel next considers a function gn increasing without limit,
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implicitly supposed to be differentiable and concave, so that p(n + 1) — ¢n < ¢'n
and @’ (0) +¢' (D) +...+¢'(n) > (p(n + 1) — ¢(0) and this implies the divergence
of @ 0) +¢' (1) +...+¢'(n) +. ThlS applies to the iterated logarithm ¢,,n =
log" (n 4 a): ¢,n and the series

= (1ta) log(nta) log? (n+a) Tog" L(nta)

1
Z 2 m—1

nlognlog n---log" " n

is divergent. On the contrary, when ¢gn = %W where o > 1,
(p(n + 1) - Qon > (p/(n + 1) and (p,n < O( ( Ogm(}’l l))ot T — (logmln)a—l)' It
results that ¢'(a) + ¢'(@a+ 1) + ... + ¢'n < Q—HW and the series
> L is convergent for o > 0. Abel derives from this

nlognlog? n--log" =1 n(log" n)l+«
statement a rule for the convergence of a series Y u,: the series is convergent if

1
log| ————————
g(u,,nlogn-««logm_' n)

oz T > | and it is divergent if this limit is < 1. For instance, in

: 1
> <
the first case, there exists an o > 0 such that u, nTognTog" T n(og" w17

lim

for n

large enough.

The first result stated by Abel on the series of functions is that when a power series
> a,x™ converges in | — «, «[, it may be differentiated term by term in this interval.
Abel returns to theorem V of his memoir on the binomial formula, which shows that
he was not satisfied with its proof. He considers ¢o(y) + @1 ()x + o2()x> + ... +
©,(»)x" 4+ ... = f(y) and he supposes that it is convergent for 0 < x < o and y
near a value S. Let A, be the limit of ¢,(y) when y tends towards 8 and suppose
that Ag + Ajx + ...+ A,x" + ... is convergent. Then the sum R of this series is
the limit of f(y). Abel writes

f('B_w) —R= (‘PO(,B—CU) _AO)+(X1¢1(/3—CL)) —Alxl))Q—{—,,,
+ (n(B — @)x] — Arx}) x5 + ...

where x = x1x2, x; < &, x, < 1 and w tends towards 0 and he chooses m such that
(pm(,B - w)x;n - Alx;n > (Pn(,B - (1)))6'11 - A1X'11

for all n, so that f(8 — @) = R+ - (¢ (B — @)x]" — A1x}") where —1 <k < 1.

Unfortunately, the value of m may depend on w and the proof is still insufficient. As

Lie remarks in the final notes (Euvres, t. II, p. 326), it is sufficient to suppose that
there exists M such that

((pn(,B _a)) - An)ag = M

for all n, for x; < ap < « and for w small enough in order to restaure a correct
proof. Abel applies his theorem to the series
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Px+ 222 +3 +. . +nx" + ...,
1 1
siny-x+Esin2y~x2+§sin3y-x3+...,
y y y
+ X+
L+y2 44y 9+4)?

continuous functions of y € R when 0 < x < 1; the second one is still convergent
when x = 1, but its sum has discontinuities as a function of y. The third one has 0
for limit when y tends towards oo, if x < 1, but the limit is % if x = 1. Abel adds
two remarks:

x2+...

. < 8 in a2 in g1y .
I. the series % + a2 4L s convergent for 0 < x < 1

- ing"*ly .
and y > 0, but when y tends towards 0, the limit A, of S"‘“TV is a"*!, so that
the series

Ag+Aix+ ... +A X" +...

is divergent when ax > 1.
II. the sum of

1 2
l4+a+. .. 4@ —(1+2a+. . .+(y+Da’)x+(1+3a+. . .+wa>’)x2—. .

a
(14x)2
When y — oo, this sum has for limit

is equal to ﬁ +

+...+# = fyfor 0 < x < 1 and y integer.

1 . .
T ifa <1+ x,but, if a > 1, the

y+n
n

limitof p,(y) =14+ n+ Da+...+ < ) a” is infinite and for a < 1, it

is m = A,. The series Ag + Ajx + ...+ A,x" + ... does not converge
whenl —x <a < 1.

Abel gives an extension of his theorem IV of the memoir on the binomial series
to the case in which ag + ajo + ara® + ... is divergent. In this case, if a,x" is
positive for n large, the limit of ag + a;x + x4+ ... forx <a tending towards
« is infinite. The end of the paper contains a proof of Taylor theorem for a function
fx = ap + ajx + apx* + ... defined by a power series convergent for 0 < x < 1.
A lemma states that if

1 1
fx = (a(()o) —i—aﬁo)x —i—ag))xz +...)+ (a(() ) —}—ai )

+(a(()") + ai")x + agn)x2 +o)+..

x+a§l)x2+...)+...

is convergent for 0 < x < 1 and if Ay = a(()o)—l—a(()l)—l—...—i—a(()")—l—... VA =

a”+aV . +a ., then fr = Ag+ Ax+ Apx 4. A Apx" 4. ..

whenever this series is convergent. Then Abel writes

f(x—i—a))=a0+a1(x+a))+a2(x+w)2+...
=a0+a1x+a2x2+...+(a1+2a2x+...)a)+...

’ a
fxa)—i—f xa)z—i—...

= 1.2
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if this series is convergent. It remains to prove the convergence under the condition
X + w < 1. Abel writes x + w = x; and x = x1x,, so that x, < 1 and
n
X
X A
1-

n n+1
To ., = X1 + (n+ Dap1x)" x2

n+1n+2
r+ D +2) 1)(2 )aHzx’f*zx% + ...

1
< -
= Un (1— Xz)”H

where v, is the least upper bound of a,1+kx;‘+k for k > 0. This gives

P w "o Up
o' — <, =
1-2.---n X1 — X1X2 1—x; 1 —x;

where v,, tends towards 0.

10 Conclusion

Two main subjects constitute the core of Abel’s work: algebraic equations and
elliptic functions, with an extension to the most general abelian integrals. As we
saw, they are intimately connected. Within our modern terminology, these subjects
may be symbolised by the terms ‘Abelian group’, which refers to a class of solvable
equations discovered by Abel, that is equations with a commutative Galois group,
and by the theorem of Abel on Abelian integrals and the term ‘Abelian variety’.

The theory of algebraic equations was one of the earliest fields of activity of
Abel. He proved the impossibility to solve by radicals the general quintic equation.
But later on he discovered that the so called Abelian equations are algebraically
solvable and he attacked the general problem to characterise solvable equations. He
obtained important results on the form of the solutions of solvable equations, and
this part of the theory was the point of departure of Kronecker’s work in algebra.
Galois attacked the same problem from a different point of view, introducing the
Galois group which measures the indiscernability between the roots.

Abel studied elliptic integrals in Legendre’s Exercices de Calcul Intégral, fol-
lowing Degen’s advice, and he immediately found fundamental new results. At the
same time, Jacobi began to investigate this subject and Abel was stimulated by the
competition with Jacobi. His theory contains all Jacobi’s results up to the year 1829,
but also some results of his own, as the study of the equation of division of an elliptic
integral or of a period of such an integral. Particularly important is his discovery of
complex multiplication which became a favourite subject for Kronecker and one of
the sources of class field theory.

Abel’s extension of the addition theorem for elliptic integrals to the general case
of Abelian integrals is rightly considered as one of the most important discoveries
in the first half of 19th century. It led Jacobi to formulate the inversion problem for
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hyperelliptic integrals. Through the works of Riemann and Clebsch, it became the
base of a new method to study the geometry of algebraic curves. Abel’s method to
prove this theorem contains in germ the notions of divisors and of linear families of
divisors on an algebraic curve and Riemann’s interpretation of Abel’s result leads to
the notion of Jacobian of an algebraic curve.

With Gauss, Bolzano, Cauchy and Dirichlet, Abel is one of the reformators of
rigour in the first half of 19th century. Abel’s transformation of series gave him a way
to prove the continuity of the sum of a power series up to the end of the interval of
convergence in the case in which the series converges in this point. This theorem is
the base of a method of summation for divergent series.

Abel always tried to attack problems in the most general way instead of studying
particular cases and particular objects. In the theory of algebraic equations, he studied
the structure of a general expression built with radicals and he asked under which
conditions such an expression was the root of an algebraic equation of given degree.
In the theory of Abelian integrals, he investigated the most general algebraic relation
between given integrals and he proved that it is reducible to a linear relation. In the
case of elliptic functions, a further reduction led to complex multiplication. This part
of Abel’s work announces Liouville’s investigations on integration in finite terms
and his classification of transcendental functions. We saw the same concern with
generality in Abel’s treatment of functional equations. This general method of Abel
is well ahead of his time and close to the modern conception of axiomatic method.
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